Quantum approximate optimization of non-planar graph problems on a planar superconducting processor

Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Go...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics Vol. 17; no. 3; pp. 332 - 336
Main Authors: Harrigan, Matthew P, Sung, Kevin J, Neeley, Matthew, Satzinger, Kevin J, Arute Frank, Arya Kunal, Atalaya Juan, Bardin, Joseph C, Barends Rami, Boixo Sergio, Broughton, Michael, Buckley, Bob B, Buell, David A, Burkett, Brian, Bushnell, Nicholas, Chen, Yu, Chen, Zijun, Chiaro, Ben, Collins, Roberto, Courtney, William, Demura, Sean, Dunsworth, Andrew, Eppens, Daniel, Fowler, Austin, Brooks, Foxen, Gidney, Craig, Giustina Marissa, Graff, Rob, Habegger, Steve, Ho, Alan, Hong, Sabrina, Huang, Trent, Ioffe, L B, Isakov, Sergei V, Evan, Jeffrey, Zhang, Jiang, Jones, Cody, Kafri Dvir, Kechedzhi Kostyantyn, Kelly, Julian, Kim, Seon, Klimov, Paul V, Korotkov, Alexander N, Kostritsa Fedor, Landhuis, David, Laptev Pavel, Lindmark, Mike, Leib, Martin, Martin, Orion, Martinis, John M, McClean, Jarrod R, McEwen, Matt, Megrant Anthony, Xiao, Mi, Mohseni Masoud, Mruczkiewicz Wojciech, Mutus Josh, Naaman Ofer, Neill, Charles, Neukart Florian, Niu Murphy Yuezhen, O’Brien Thomas E, O’Gorman Bryan, Ostby, Eric, Petukhov, Andre, Putterman Harald, Quintana, Chris, Roushan Pedram, Rubin, Nicholas C, Sank, Daniel, Skolik Andrea, Smelyanskiy Vadim, Strain, Doug, Streif, Michael, Szalay, Marco, Vainsencher Amit, White, Theodore, Jamie, Yao Z, Yeh Ping, Zalcman, Adam, Zhou, Leo, Neven Hartmut, Bacon, Dave, Lucero, Erik, Farhi, Edward, Ryan, Babbush
Format: Journal Article
Language:English
Published: London Nature Publishing Group 01.03.2021
Subjects:
ISSN:1745-2473, 1745-2481
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.
AbstractList Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.
Author Kostritsa Fedor
Ryan, Babbush
Quintana, Chris
Gidney, Craig
O’Brien Thomas E
Yeh Ping
Jamie, Yao Z
Buell, David A
Ho, Alan
Brooks, Foxen
Mohseni Masoud
Eppens, Daniel
Graff, Rob
Putterman Harald
Collins, Roberto
Lindmark, Mike
Niu Murphy Yuezhen
Sung, Kevin J
Martinis, John M
McEwen, Matt
Xiao, Mi
Zalcman, Adam
Kelly, Julian
Sank, Daniel
White, Theodore
Dunsworth, Andrew
Hong, Sabrina
Harrigan, Matthew P
Neven Hartmut
Zhou, Leo
Ostby, Eric
Farhi, Edward
Arya Kunal
Kafri Dvir
O’Gorman Bryan
Landhuis, David
Leib, Martin
Smelyanskiy Vadim
Laptev Pavel
Broughton, Michael
Streif, Michael
Fowler, Austin
Barends Rami
Habegger, Steve
Huang, Trent
Boixo Sergio
Giustina Marissa
Bacon, Dave
McClean, Jarrod R
Martin, Orion
Arute Frank
Atalaya Juan
Burkett, Brian
Mutus Josh
Bardin, Joseph C
Lucero, Erik
Kim, Seon
Strain, Doug
Chiaro, Ben
Ioffe, L B
Isakov, Sergei V
Korotkov, Alexander N
Mruczkiewicz Wojciech
Roushan Pedram
Courtney, William
Petukhov, Andre
Rubin, Nicholas C
Bushnell, Nicholas
Kechedzhi Kostyantyn
Chen, Yu
Neukart Florian
Naaman Ofer
Demura, Sean
Klimov,
Author_xml – sequence: 1
  givenname: Matthew
  surname: Harrigan
  middlename: P
  fullname: Harrigan, Matthew P
– sequence: 2
  givenname: Kevin
  surname: Sung
  middlename: J
  fullname: Sung, Kevin J
– sequence: 3
  givenname: Matthew
  surname: Neeley
  fullname: Neeley, Matthew
– sequence: 4
  givenname: Kevin
  surname: Satzinger
  middlename: J
  fullname: Satzinger, Kevin J
– sequence: 5
  fullname: Arute Frank
– sequence: 6
  fullname: Arya Kunal
– sequence: 7
  fullname: Atalaya Juan
– sequence: 8
  givenname: Joseph
  surname: Bardin
  middlename: C
  fullname: Bardin, Joseph C
– sequence: 9
  fullname: Barends Rami
– sequence: 10
  fullname: Boixo Sergio
– sequence: 11
  givenname: Michael
  surname: Broughton
  fullname: Broughton, Michael
– sequence: 12
  givenname: Bob
  surname: Buckley
  middlename: B
  fullname: Buckley, Bob B
– sequence: 13
  givenname: David
  surname: Buell
  middlename: A
  fullname: Buell, David A
– sequence: 14
  givenname: Brian
  surname: Burkett
  fullname: Burkett, Brian
– sequence: 15
  givenname: Nicholas
  surname: Bushnell
  fullname: Bushnell, Nicholas
– sequence: 16
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
– sequence: 17
  givenname: Zijun
  surname: Chen
  fullname: Chen, Zijun
– sequence: 18
  givenname: Ben
  surname: Chiaro
  fullname: Chiaro, Ben
– sequence: 19
  givenname: Roberto
  surname: Collins
  fullname: Collins, Roberto
– sequence: 20
  givenname: William
  surname: Courtney
  fullname: Courtney, William
– sequence: 21
  givenname: Sean
  surname: Demura
  fullname: Demura, Sean
– sequence: 22
  givenname: Andrew
  surname: Dunsworth
  fullname: Dunsworth, Andrew
– sequence: 23
  givenname: Daniel
  surname: Eppens
  fullname: Eppens, Daniel
– sequence: 24
  givenname: Austin
  surname: Fowler
  fullname: Fowler, Austin
– sequence: 25
  givenname: Foxen
  surname: Brooks
  fullname: Brooks, Foxen
– sequence: 26
  givenname: Craig
  surname: Gidney
  fullname: Gidney, Craig
– sequence: 27
  fullname: Giustina Marissa
– sequence: 28
  givenname: Rob
  surname: Graff
  fullname: Graff, Rob
– sequence: 29
  givenname: Steve
  surname: Habegger
  fullname: Habegger, Steve
– sequence: 30
  givenname: Alan
  surname: Ho
  fullname: Ho, Alan
– sequence: 31
  givenname: Sabrina
  surname: Hong
  fullname: Hong, Sabrina
– sequence: 32
  givenname: Trent
  surname: Huang
  fullname: Huang, Trent
– sequence: 33
  givenname: L
  surname: Ioffe
  middlename: B
  fullname: Ioffe, L B
– sequence: 34
  givenname: Sergei
  surname: Isakov
  middlename: V
  fullname: Isakov, Sergei V
– sequence: 35
  givenname: Jeffrey
  surname: Evan
  fullname: Evan, Jeffrey
– sequence: 36
  givenname: Jiang
  surname: Zhang
  fullname: Zhang, Jiang
– sequence: 37
  givenname: Cody
  surname: Jones
  fullname: Jones, Cody
– sequence: 38
  fullname: Kafri Dvir
– sequence: 39
  fullname: Kechedzhi Kostyantyn
– sequence: 40
  givenname: Julian
  surname: Kelly
  fullname: Kelly, Julian
– sequence: 41
  givenname: Seon
  surname: Kim
  fullname: Kim, Seon
– sequence: 42
  givenname: Paul
  surname: Klimov
  middlename: V
  fullname: Klimov, Paul V
– sequence: 43
  givenname: Alexander
  surname: Korotkov
  middlename: N
  fullname: Korotkov, Alexander N
– sequence: 44
  fullname: Kostritsa Fedor
– sequence: 45
  givenname: David
  surname: Landhuis
  fullname: Landhuis, David
– sequence: 46
  fullname: Laptev Pavel
– sequence: 47
  givenname: Mike
  surname: Lindmark
  fullname: Lindmark, Mike
– sequence: 48
  givenname: Martin
  surname: Leib
  fullname: Leib, Martin
– sequence: 49
  givenname: Orion
  surname: Martin
  fullname: Martin, Orion
– sequence: 50
  givenname: John
  surname: Martinis
  middlename: M
  fullname: Martinis, John M
– sequence: 51
  givenname: Jarrod
  surname: McClean
  middlename: R
  fullname: McClean, Jarrod R
– sequence: 52
  givenname: Matt
  surname: McEwen
  fullname: McEwen, Matt
– sequence: 53
  fullname: Megrant Anthony
– sequence: 54
  givenname: Mi
  surname: Xiao
  fullname: Xiao, Mi
– sequence: 55
  fullname: Mohseni Masoud
– sequence: 56
  fullname: Mruczkiewicz Wojciech
– sequence: 57
  fullname: Mutus Josh
– sequence: 58
  fullname: Naaman Ofer
– sequence: 59
  givenname: Charles
  surname: Neill
  fullname: Neill, Charles
– sequence: 60
  fullname: Neukart Florian
– sequence: 61
  fullname: Niu Murphy Yuezhen
– sequence: 62
  fullname: O’Brien Thomas E
– sequence: 63
  fullname: O’Gorman Bryan
– sequence: 64
  givenname: Eric
  surname: Ostby
  fullname: Ostby, Eric
– sequence: 65
  givenname: Andre
  surname: Petukhov
  fullname: Petukhov, Andre
– sequence: 66
  fullname: Putterman Harald
– sequence: 67
  givenname: Chris
  surname: Quintana
  fullname: Quintana, Chris
– sequence: 68
  fullname: Roushan Pedram
– sequence: 69
  givenname: Nicholas
  surname: Rubin
  middlename: C
  fullname: Rubin, Nicholas C
– sequence: 70
  givenname: Daniel
  surname: Sank
  fullname: Sank, Daniel
– sequence: 71
  fullname: Skolik Andrea
– sequence: 72
  fullname: Smelyanskiy Vadim
– sequence: 73
  givenname: Doug
  surname: Strain
  fullname: Strain, Doug
– sequence: 74
  givenname: Michael
  surname: Streif
  fullname: Streif, Michael
– sequence: 75
  givenname: Marco
  surname: Szalay
  fullname: Szalay, Marco
– sequence: 76
  fullname: Vainsencher Amit
– sequence: 77
  givenname: Theodore
  surname: White
  fullname: White, Theodore
– sequence: 78
  givenname: Yao
  surname: Jamie
  middlename: Z
  fullname: Jamie, Yao Z
– sequence: 79
  fullname: Yeh Ping
– sequence: 80
  givenname: Adam
  surname: Zalcman
  fullname: Zalcman, Adam
– sequence: 81
  givenname: Leo
  surname: Zhou
  fullname: Zhou, Leo
– sequence: 82
  fullname: Neven Hartmut
– sequence: 83
  givenname: Dave
  surname: Bacon
  fullname: Bacon, Dave
– sequence: 84
  givenname: Erik
  surname: Lucero
  fullname: Lucero, Erik
– sequence: 85
  givenname: Edward
  surname: Farhi
  fullname: Farhi, Edward
– sequence: 86
  givenname: Babbush
  surname: Ryan
  fullname: Ryan, Babbush
BookMark eNo9j09LxDAUxIOs4O7qF_AU8BxNmqRpjrL4DxZE0PPymiZrlzapSQrqpzfi4ukNzDC_Nyu08MFbhC4ZvWaUNzdJMFkrQitKKGNUkq8TtGRKSFKJhi3-teJnaJXSgVJR1YwvkXmZwed5xDBNMXz2I2SLw5T7sf-G3AePg8MFRqYBPES8jzC94xJtBzsmXHzARyvNk40m-G42uff735CxKYV4jk4dDMleHO8avd3fvW4eyfb54WlzuyWGNzIT1rnyk7PQWs64UJ2mnXOila5ylmupdV3XrVRWAQUljeBcN652oBtpusbyNbr66y3kj9mmvDuEOfqC3FVCa0FZmc1_AB0iXIA
CitedBy_id crossref_primary_10_1103_PhysRevApplied_23_014045
crossref_primary_10_1002_qute_202300113
crossref_primary_10_1007_s11433_021_1844_7
crossref_primary_10_1103_PhysRevA_103_042612
crossref_primary_10_1103_PhysRevResearch_6_013071
crossref_primary_10_1103_RevModPhys_94_015004
crossref_primary_10_1109_ACCESS_2023_3324253
crossref_primary_10_1140_epjqt_s40507_023_00166_1
crossref_primary_10_3390_e24111685
crossref_primary_10_1007_s11128_025_04925_0
crossref_primary_10_1038_s41534_025_01082_1
crossref_primary_10_1016_j_mattod_2023_02_014
crossref_primary_10_1007_s11467_022_1249_z
crossref_primary_10_1088_1367_2630_acd571
crossref_primary_10_1088_2058_9565_acf59c
crossref_primary_10_3390_e25081238
crossref_primary_10_1088_1612_202X_accf79
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1103_PhysRevA_111_022618
crossref_primary_10_1088_1674_1056_ac9b32
crossref_primary_10_1016_j_rser_2022_112493
crossref_primary_10_1103_PhysRevA_105_012419
crossref_primary_10_1088_2058_9565_ac7ba3
crossref_primary_10_1103_PRXQuantum_3_030304
crossref_primary_10_1038_s41567_020_01126_7
crossref_primary_10_1038_s41598_022_14767_w
crossref_primary_10_1103_PhysRevResearch_5_023147
crossref_primary_10_1145_3711935
crossref_primary_10_1109_TQE_2021_3090207
crossref_primary_10_1007_s42484_022_00069_x
crossref_primary_10_1002_andp_202200531
crossref_primary_10_1103_PhysRevX_13_041057
crossref_primary_10_1103_24gg_7p8z
crossref_primary_10_1287_ijoc_2024_0551
crossref_primary_10_1007_s11433_022_2057_y
crossref_primary_10_1103_PhysRevX_13_041052
crossref_primary_10_1007_s11433_022_2044_5
crossref_primary_10_1103_PhysRevResearch_4_033012
crossref_primary_10_1088_1674_1056_acce9a
crossref_primary_10_1103_PhysRevResearch_5_023141
crossref_primary_10_20935_AcadQuant7900
crossref_primary_10_1038_s41598_023_31980_3
crossref_primary_10_1103_PhysRevResearch_7_013129
crossref_primary_10_1007_s11128_024_04438_2
crossref_primary_10_1109_TQE_2021_3063635
crossref_primary_10_1038_s41534_024_00854_5
crossref_primary_10_1103_PhysRevResearch_5_L012021
crossref_primary_10_1103_PhysRevX_11_031057
crossref_primary_10_1103_PhysRevX_12_041022
crossref_primary_10_22331_q_2025_08_29_1841
crossref_primary_10_3390_computers14040137
crossref_primary_10_3390_e26070586
crossref_primary_10_1038_s41534_021_00478_z
crossref_primary_10_1088_2058_9565_ad9cba
crossref_primary_10_1016_j_scib_2023_08_040
crossref_primary_10_1088_2058_9565_ac6824
crossref_primary_10_1038_s41467_021_27045_6
crossref_primary_10_1103_PhysRevResearch_4_033140
crossref_primary_10_1145_3517340
crossref_primary_10_1103_PhysRevResearch_4_033142
crossref_primary_10_1109_JSSC_2021_3115988
crossref_primary_10_1103_PhysRevResearch_4_033028
crossref_primary_10_1103_PhysRevResearch_4_033149
crossref_primary_10_1103_PhysRevA_106_022606
crossref_primary_10_1103_PhysRevResearch_4_033029
crossref_primary_10_1016_j_physa_2024_129951
crossref_primary_10_1103_PhysRevResearch_3_043088
crossref_primary_10_1140_epjqt_s40507_024_00262_w
crossref_primary_10_1103_PhysRevX_11_041032
crossref_primary_10_1140_epjqt_s40507_022_00123_4
crossref_primary_10_1063_5_0261878
crossref_primary_10_1016_j_ejor_2023_03_013
crossref_primary_10_1103_PhysRevApplied_19_024027
crossref_primary_10_1103_PhysRevA_111_012619
crossref_primary_10_1103_nt3w_j4mj
crossref_primary_10_1103_PhysRevApplied_18_064046
crossref_primary_10_1016_j_jcp_2024_112756
crossref_primary_10_1103_PRXQuantum_4_020304
crossref_primary_10_1002_cbic_202300120
crossref_primary_10_1088_2058_9565_acb1d0
crossref_primary_10_1103_PRXQuantum_6_020306
crossref_primary_10_1088_2058_9565_ac3e54
crossref_primary_10_1103_PhysRevResearch_6_023129
crossref_primary_10_1145_3510857
crossref_primary_10_22331_q_2025_05_05_1730
crossref_primary_10_1038_s41467_024_46623_y
crossref_primary_10_1103_PhysRevApplied_20_044041
crossref_primary_10_1103_PhysRevA_106_062414
crossref_primary_10_1145_3620668
crossref_primary_10_1007_s11128_025_04743_4
crossref_primary_10_1109_TQE_2022_3203153
crossref_primary_10_22331_q_2025_05_28_1757
crossref_primary_10_3390_math10152601
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1063_5_0060246
crossref_primary_10_1145_3584706
crossref_primary_10_1103_PhysRevA_106_022423
crossref_primary_10_1038_s41534_022_00592_6
crossref_primary_10_1002_aic_17651
crossref_primary_10_1073_pnas_2212323120
crossref_primary_10_1109_TWC_2024_3523135
crossref_primary_10_1134_S0021364023603056
crossref_primary_10_1038_s41534_023_00718_4
crossref_primary_10_1038_s41534_024_00849_2
crossref_primary_10_1126_science_abq3754
crossref_primary_10_1103_PhysRevLett_134_090601
crossref_primary_10_3390_data7030028
crossref_primary_10_1109_ACCESS_2025_3528443
crossref_primary_10_1016_j_gmod_2024_101237
crossref_primary_10_1103_PhysRevApplied_22_044074
crossref_primary_10_1103_PRXQuantum_4_040335
crossref_primary_10_1002_qute_202300055
crossref_primary_10_1109_ACCESS_2024_3432330
crossref_primary_10_1134_S0021364023604256
crossref_primary_10_1038_s41534_021_00452_9
crossref_primary_10_1088_1751_8121_ad00f0
crossref_primary_10_1103_PhysRevResearch_6_043297
crossref_primary_10_1109_TWC_2024_3383101
crossref_primary_10_1088_1674_1056_ad09ca
crossref_primary_10_1140_epjc_s10052_022_10377_y
crossref_primary_10_1103_PhysRevResearch_5_023171
crossref_primary_10_1103_PhysRevA_104_032401
crossref_primary_10_1109_JETCAS_2022_3202870
crossref_primary_10_1016_j_future_2025_107906
crossref_primary_10_1109_TIT_2023_3250100
crossref_primary_10_1016_j_jfranklin_2022_10_027
crossref_primary_10_1103_PhysRevResearch_5_043285
crossref_primary_10_1109_MNANO_2025_3585998
crossref_primary_10_3367_UFNr_2021_02_038934
crossref_primary_10_3367_UFNe_2021_02_038934
crossref_primary_10_1088_2058_9565_ad895c
crossref_primary_10_1103_PhysRevA_111_012416
crossref_primary_10_2478_qic_2025_0006
crossref_primary_10_1103_PhysRevResearch_6_013223
crossref_primary_10_1007_s12033_023_00863_3
crossref_primary_10_1103_PhysRevE_110_065306
crossref_primary_10_1016_j_future_2025_107934
crossref_primary_10_3390_e26121025
crossref_primary_10_1038_s41598_024_70649_3
crossref_primary_10_1109_ACCESS_2025_3578780
crossref_primary_10_1103_PhysRevApplied_19_044001
crossref_primary_10_1109_TCOMM_2022_3185287
crossref_primary_10_1007_s00521_022_07438_4
crossref_primary_10_1109_TQE_2021_3066275
crossref_primary_10_1109_TQE_2023_3325167
crossref_primary_10_1103_v1sh_fg6f
crossref_primary_10_1038_s42005_025_02145_7
crossref_primary_10_1137_22M1514581
crossref_primary_10_1038_s41534_021_00440_z
crossref_primary_10_1038_s41566_022_01019_6
crossref_primary_10_1007_s43673_022_00058_z
crossref_primary_10_1109_LSP_2024_3480043
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_1103_PRXQuantum_3_020365
crossref_primary_10_1088_2058_9565_ac26af
crossref_primary_10_1103_PhysRevApplied_20_014024
crossref_primary_10_1103_PhysRevApplied_19_024043
crossref_primary_10_1088_2632_2153_ada0a4
crossref_primary_10_1109_ACCESS_2025_3550788
crossref_primary_10_1103_62wx_tvk5
crossref_primary_10_1063_5_0189374
crossref_primary_10_1103_PhysRevResearch_6_023026
crossref_primary_10_1088_2058_9565_ac9013
crossref_primary_10_1103_PRXQuantum_2_030318
crossref_primary_10_1016_j_scib_2021_10_017
crossref_primary_10_1103_PhysRevResearch_6_023031
crossref_primary_10_1016_j_apenergy_2024_122878
crossref_primary_10_1103_jkf7_wfcn
crossref_primary_10_1109_MNET_012_2000770
crossref_primary_10_1038_s41598_024_67922_w
crossref_primary_10_1103_PhysRevA_103_042412
crossref_primary_10_1007_s42484_023_00132_1
crossref_primary_10_1103_PhysRevResearch_5_043005
crossref_primary_10_1103_PhysRevResearch_5_043126
crossref_primary_10_1103_PhysRevResearch_5_033159
crossref_primary_10_1007_s11432_022_3511_5
crossref_primary_10_1103_PRXQuantum_2_030346
crossref_primary_10_1103_PhysRevResearch_7_023240
crossref_primary_10_1103_PhysRevX_11_021026
crossref_primary_10_1038_s44172_023_00061_8
crossref_primary_10_1109_TQE_2022_3175267
crossref_primary_10_1038_s41534_021_00496_x
crossref_primary_10_1038_s41598_022_20853_w
crossref_primary_10_3390_electronics11071033
crossref_primary_10_1109_TCE_2024_3476156
crossref_primary_10_1103_PhysRevApplied_23_034022
crossref_primary_10_1088_1367_2630_acb22c
crossref_primary_10_1103_PhysRevResearch_4_013141
crossref_primary_10_1038_s41598_023_45540_2
crossref_primary_10_1038_s41567_021_01356_3
crossref_primary_10_1038_s42005_025_02136_8
crossref_primary_10_1103_PhysRevResearch_4_023249
crossref_primary_10_1088_2058_9565_ac91ef
crossref_primary_10_1103_PhysRevApplied_22_054037
crossref_primary_10_1063_5_0068255
crossref_primary_10_1038_s41534_022_00596_2
crossref_primary_10_1016_j_neunet_2024_106508
crossref_primary_10_1103_PRXQuantum_3_040339
crossref_primary_10_1038_s41534_024_00906_w
crossref_primary_10_1103_PhysRevApplied_21_044035
crossref_primary_10_1103_PhysRevA_107_062406
crossref_primary_10_1103_PhysRevResearch_5_013097
crossref_primary_10_1109_TASC_2025_3540049
crossref_primary_10_1103_PhysRevApplied_16_054023
crossref_primary_10_1126_science_abo6587
crossref_primary_10_1038_s42005_024_01577_x
crossref_primary_10_1038_s41598_024_76967_w
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_1038_s41598_022_10555_8
crossref_primary_10_1088_2058_9565_ad35e4
crossref_primary_10_1103_PhysRevResearch_7_023142
crossref_primary_10_1103_PhysRevResearch_3_013286
crossref_primary_10_1088_1361_6455_ac6366
crossref_primary_10_1103_PRXQuantum_3_040326
crossref_primary_10_1007_s42484_024_00167_y
crossref_primary_10_1103_PhysRevLett_127_110504
crossref_primary_10_3390_computers14080310
crossref_primary_10_1103_PhysRevApplied_20_034062
crossref_primary_10_1103_PhysRevApplied_20_064016
crossref_primary_10_1103_PhysRevResearch_7_023123
crossref_primary_10_1109_ACCESS_2023_3336989
crossref_primary_10_1038_s41467_022_33335_4
crossref_primary_10_1038_s41586_022_04603_6
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_3390_a15100356
crossref_primary_10_1007_s11433_024_2501_4
crossref_primary_10_1103_PhysRevX_11_021058
crossref_primary_10_1002_qute_202300461
crossref_primary_10_1038_s41534_023_00787_5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID 3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-020-01105-y
DatabaseName ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 336
GroupedDBID 0R~
123
29M
39C
3V.
4.4
6OB
70F
7U5
7XB
88I
8FD
8FE
8FG
8FH
8FK
8R4
8R5
AARCD
AAYZH
ABFSG
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACSTC
ADBBV
ADFRT
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DU5
DWQXO
EBS
EE.
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
L7M
LK5
M2P
M7R
N9A
NNMJJ
O9-
P2P
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
Q2X
Q9U
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
ID FETCH-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3
IEDL.DBID M2P
ISICitedReferencesCount 358
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614789700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Sat Aug 23 13:29:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2499401004
PQPubID 27545
PageCount 5
ParticipantIDs proquest_journals_2499401004
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0042613
Score 2.7338927
Snippet Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the...
SourceID proquest
SourceType Aggregation Database
StartPage 332
SubjectTerms Algorithms
Combinatorial analysis
Gates (circuits)
Graph theory
Graphs
Hardware
Logistics
Machine learning
Microprocessors
Optimization
Optimization algorithms
Quantum computers
Qubits (quantum computing)
Superconductivity
Title Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
URI https://www.proquest.com/docview/2499401004
Volume 17
WOSCitedRecordID wos000614789700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmFN-JRKg-sVpPajuMJAWrFQhUQSBVL5fghVaJJSBoE_x7bdcWAxMLi5RbrHH93n3P3HQBXTgIuz7FCKuEaEc0wsskRRyaOpMp5LCnN_bAJNpmk0ynPwoNbE8oq15jogVqV0r2RDyxN4JYL2DO9rt6Rmxrl_q6GERqboGszm9iVdD0MszUSO3aAVw2RFA0Jw6FpJsLpoHHEhSFHnlwEpOjrFxj7CDPe--_e9sFuyC3hzepjOAAbujgE277GUzZHQD621o3tAnod8c-5zVU1LC1kLEIvJiwNLMoCVW-iEDX0WtYwTJxpoLULGExNW-naMmknFmtjH6xW7QZlfQxexqPnu3sUZiwgiVO6RLEy1ktGi1xj11WqeKSMITk1Q6Mxd-ItSZJTppmIBKOSYMxTkxjBUycroPEJ6Nid6VMAI2kSQXnCtNREpEQkPI2wMoRgHQsmz0Bv7b1ZuCjN7Md153-bL8DO0JWT-PKvHugs61Zfgi35sZw3dR90b0eT7Knvz9-uGX39BthGu8I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB1qVfTit_hRdQ96XJpmd7PZg4iopaIWhQre6mazCwWb1KRV-6f8je6mCR4Ebx48L4QkM7yZl8x7A3DsLOCiiMQ4DoTGVHOCbXMksGl5Ko5ESzEWFcsmeLcbPj2J-xp8VloYN1ZZYWIB1HGq3DfypqUJwnIBG9Oz0St2W6Pc39VqhcYsLW709N1Stvz0-tLG98T321e9iw4utwpgRUI2xq3YWNZgtIw0cTrKWHixMTRixjeaCGdXEgQR45pLT3KmKCEiNIGRInRCek3sdedgnjpnMTcq6N9XyO_YCJkJMBn2KSelSMcjYTN3RIljR9ZcxWV4-gP8i4rWXv1v72INVsreGZ3Pkn0dajrZgMVihlXlm6AeJjZNJkNU-KR_DGwvrlFqIXFYak1RalCSJnj0IhOZocKrG5UbdXJkzyUqj_LJSGcqTZwZrq3taDSTU6TZFjz-yRNuQ93emd4B5CkTSCYCrpWmMqQyEKFHYkMp0S3J1S40qmj1SyDI-9-h2vv9-AiWOr272_7tdfdmH5Z9NzpTjLo1oD7OJvoAFtTbeJBnh0XOIXj-68B-AYJWF3I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qfeDFt_iougc9Lk2z2Wz2ICLWYqmUCgrFS91sdqFgk5q0av-av87dNMGD4K0HzwMhyczOzJd83wzAuR0BF4YkwpHPFfYUI9g0RxzrhiOjkDckpWG-bIJ1u0G_z3sV-Cq1MJZWWebEPFFHibTfyOsGJnCDBYxP67qgRfSaravxG7YbpOyf1nKdxjxEOmr2YeBbdtluGl9fuG7r9vHmDhcbBrAkAZ3gRqQNgtBKhIpYTWXEnUhrL6Ta1YpwO7rE90PKFBOOYFR6hPBA-1rwwIrqFTHXXYJlZjCmpRP26HNZBSwyIXMxJsWux0gh2HFIUM8saGLYAjdbfSme_SoEeXVrbf7n97IFG0VPja7nh2AbKiregdWc2yqzXZAPUxM-0xHK56d_Dk2PrlBiUuWo0KCiRKM4ifH4VcQiRfkMb1Rs2smQsQtUmLLpWKUyie2QXFPz0Xgus0jSPXhayBPuQ9XcmToA5EjtC8p9pqTyROAJnwcOibTnEdUQTB5CrfTcoEgQ2eDHbUd_m89gzfhzcN_udo5h3bWMmpwBV4PqJJ2qE1iR75Nhlp7m4YfgZdF-_QZhlSBe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+approximate+optimization+of+non-planar+graph+problems+on+a+planar+superconducting+processor&rft.jtitle=Nature+physics&rft.au=Harrigan%2C+Matthew+P&rft.au=Sung%2C+Kevin+J&rft.au=Neeley%2C+Matthew&rft.au=Satzinger%2C+Kevin+J&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=3&rft.spage=332&rft.epage=336&rft_id=info:doi/10.1038%2Fs41567-020-01105-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon