Automatic segmentation of lung tumors on CT images based on a 2D & 3D hybrid convolutional neural network

A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of radiology Jg. 94; H. 1126; S. 20210038
Hauptverfasser: Gan, Wutian, Wang, Hao, Gu, Hengle, Duan, Yanhua, Shao, Yan, Chen, Hua, Feng, Aihui, Huang, Ying, Fu, Xiaolong, Ying, Yanchen, Quan, Hong, Xu, Zhiyong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England The British Institute of Radiology 01.10.2021
Schlagworte:
ISSN:0007-1285, 1748-880X, 1748-880X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning. In this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder-decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored. The newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics ( < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable. The implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images. The hybrid CNN has valuable prospect with the ability to segment lung tumor.
AbstractList A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning.OBJECTIVEA stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning.In this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder-decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored.METHODSIn this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder-decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored.The newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics (p < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable.RESULTSThe newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics (p < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable.The implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images.CONCLUSIONSThe implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images.The hybrid CNN has valuable prospect with the ability to segment lung tumor.ADVANCES IN KNOWLEDGEThe hybrid CNN has valuable prospect with the ability to segment lung tumor.
A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning. In this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder-decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored. The newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics ( < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable. The implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images. The hybrid CNN has valuable prospect with the ability to segment lung tumor.
Author Shao, Yan
Duan, Yanhua
Ying, Yanchen
Xu, Zhiyong
Gan, Wutian
Quan, Hong
Chen, Hua
Huang, Ying
Feng, Aihui
Gu, Hengle
Wang, Hao
Fu, Xiaolong
Author_xml – sequence: 1
  givenname: Wutian
  surname: Gan
  fullname: Gan, Wutian
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 3
  givenname: Hengle
  surname: Gu
  fullname: Gu, Hengle
– sequence: 4
  givenname: Yanhua
  surname: Duan
  fullname: Duan, Yanhua
– sequence: 5
  givenname: Yan
  surname: Shao
  fullname: Shao, Yan
– sequence: 6
  givenname: Hua
  surname: Chen
  fullname: Chen, Hua
– sequence: 7
  givenname: Aihui
  surname: Feng
  fullname: Feng, Aihui
– sequence: 8
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
– sequence: 9
  givenname: Xiaolong
  surname: Fu
  fullname: Fu, Xiaolong
– sequence: 10
  givenname: Yanchen
  surname: Ying
  fullname: Ying, Yanchen
– sequence: 11
  givenname: Hong
  surname: Quan
  fullname: Quan, Hong
– sequence: 12
  givenname: Zhiyong
  surname: Xu
  fullname: Xu, Zhiyong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34347535$$D View this record in MEDLINE/PubMed
BookMark eNptUbtOwzAUtVARLY-NGXlCDKQ4fjTOglSVp1SJpQOb5ThOMSR2sRMQf49DWwSI6T587jnX9-yDgXVWA3CconGKWX5RPPsxRjhFiPAdMEozyhPO0eMAjBBCWZJizoZgP4TnvmQ52gNDQgnNGGEjYKZd6xrZGgWDXjbatjF3FroK1p1dwrZrnA8wdmYLaBq51AEWMuiyb0mIr-ApJFfw6aPwpoTK2TdXdz2DrKHVnf8K7bvzL4dgt5J10EebeAAWN9eL2V0yf7i9n03niSKctonkGOcVqVSqiMSFZJoTkuWYIs1YVfGyxFxmmk4mOclLhiSROY1ITQuUVpQcgMs17aorGl2q-KO4hFj5uLz_EE4a8fvFmiexdG8iJ5ijSU9wtiHw7rXToRWNCUrXtbTadUFgxjhlZEJxhJ781PoW2Z43AvAaoLwLwetKKLM-cJQ2tUiR6D0U0UOx9TAOnf8Z2vL-C_8EF5-eOQ
CitedBy_id crossref_primary_10_1109_JBHI_2024_3400599
crossref_primary_10_1002_mp_17463
crossref_primary_10_3390_diagnostics12122971
crossref_primary_10_1038_s41598_025_95757_6
crossref_primary_10_3390_cancers15092573
crossref_primary_10_1016_j_radonc_2024_110344
crossref_primary_10_1109_JBHI_2022_3186275
crossref_primary_10_26599_BDMA_2024_9020088
crossref_primary_10_3390_biology10111084
crossref_primary_10_1148_radiol_233029
crossref_primary_10_1007_s00066_024_02262_2
crossref_primary_10_1177_15593258241263687
crossref_primary_10_1016_j_compmedimag_2024_102383
crossref_primary_10_1097_MCP_0000000000001179
crossref_primary_10_1186_s12885_024_11962_y
crossref_primary_10_3390_jcm11247334
crossref_primary_10_1007_s10044_025_01425_w
crossref_primary_10_1371_journal_pone_0266147
crossref_primary_10_4103_digm_digm_25_22
crossref_primary_10_1016_j_phro_2024_100637
crossref_primary_10_3390_cancers14225569
crossref_primary_10_1016_j_clon_2023_01_016
crossref_primary_10_3390_diagnostics15070846
crossref_primary_10_7717_peerj_cs_1802
crossref_primary_10_1371_journal_pone_0282107
crossref_primary_10_1002_mp_15904
crossref_primary_10_1007_s10278_025_01458_x
Cites_doi 10.7150/ijms.3635
10.1109/TMI.2018.2845918
10.1002/cncr.32802
10.1109/TMI.2019.2923601
10.1016/j.neunet.2020.03.007
10.1007/s00066-015-0812-8
10.1109/TMI.2018.2821244
10.1016/j.cmpb.2020.105395
10.1002/mp.13331
10.1016/j.neucom.2018.10.099
10.1109/ACCESS.2019.2921434
10.1007/s00066-003-0976-5
10.1007/s00259-020-04781-3
10.1088/1361-6560/aaf44b
10.1109/TMI.2019.2928056
10.1007/s11548-016-1467-3
10.1093/jrr/rrz086
ContentType Journal Article
Copyright 2021 The Authors. Published by the British Institute of Radiology 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by the British Institute of Radiology 2021 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1259/bjr.20210038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Hybrid CNN for lung tumor segmentation on CT images
EISSN 1748-880X
ExternalDocumentID PMC9328064
34347535
10_1259_bjr_20210038
Genre Journal Article
Comparative Study
GroupedDBID ---
.55
0R~
169
18M
1OC
23N
2WC
33P
36B
4.4
53G
5GY
5RE
5WD
6J9
AANLZ
AAUAY
AAWTL
AAXRX
AAYXX
ABCUV
ABDFA
ABEJV
ABGNP
ABJNI
ABNHQ
ABQNK
ABSZQ
ABXGK
ABXVV
ACAHQ
ACCZN
ACGFO
ACGOF
ACXBN
ADBBV
ADBTR
ADIPN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
AEGXH
AENEX
AEUYR
AHMMS
AIACR
AIAGR
AIURR
AJAOE
AJNCP
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AOIJS
BAWUL
BCRHZ
BFHJK
C45
CITATION
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EMB
EMOBN
F5P
GX1
H13
HYE
IH2
KBYEO
KOP
L7B
LATKE
LEEKS
LYRES
MXFUL
MXMAN
MXSTM
NU-
OCZFY
OJZSN
OK1
OVD
OWPYF
P0W
P2P
ROX
SJN
SUPJJ
SV3
TEORI
TR2
TUS
TWZ
TXR
W8F
WIN
WOQ
X7M
ZZTAW
AGORE
ALUQN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c384t-a8229f3fc1c3a2ba5e83379240e55ff8dd28a7e466939d50a3a943a2e4b01f43
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698627000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1285
1748-880X
IngestDate Tue Nov 04 02:06:56 EST 2025
Thu Oct 02 07:03:21 EDT 2025
Mon Jul 21 06:00:34 EDT 2025
Sat Nov 29 06:21:55 EST 2025
Tue Nov 18 21:40:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1126
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-a8229f3fc1c3a2ba5e83379240e55ff8dd28a7e466939d50a3a943a2e4b01f43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doi.org/10.1259/bjr.20210038
PMID 34347535
PQID 2558453642
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9328064
proquest_miscellaneous_2558453642
pubmed_primary_34347535
crossref_citationtrail_10_1259_bjr_20210038
crossref_primary_10_1259_bjr_20210038
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle British journal of radiology
PublicationTitleAlternate Br J Radiol
PublicationYear 2021
Publisher The British Institute of Radiology
Publisher_xml – name: The British Institute of Radiology
References Baldeon Calisto (2024050215405672700_b15) 2020; 126
Kumar (2024050215405672700_b26) 2019; 39
Baskar (2024050215405672700_b2) 2012; 9
Huang (2024050215405672700_b22) 2017
Pang (2024050215405672700_b7) 2020; 47
Zhong (2024050215405672700_b27) 2019; 46
Liu (2024050215405672700_b10) 2018
Weiss (2024050215405672700_b3) 2003; 179
Jue (2024050215405672700_b28) 2019; 11769
Hossain (2024050215405672700_b18) 2019
Long (2024050215405672700_b13) 2015
Zheng (2024050215405672700_b16) 2019; 33
Nemoto (2024050215405672700_b14) 2020; 61
Henley (2024050215405672700_b1) 2020; 126
Chen (2024050215405672700_b9) 2016
Ronneberger (2024050215405672700_b8) 2015
Zhao (2024050215405672700_b25) 2018; 64
Pang (2024050215405672700_b6) 2019
Kamal (2024050215405672700_b5) 2020
Li (2024050215405672700_b21) 2020; 392
Schimek-Jasch (2024050215405672700_b4) 2015; 191
Jia (2024050215405672700_b11) 2020; 39
Li (2024050215405672700_b17) 2018; 37
Chen (2024050215405672700_b19) 2019; 7
Milletari (2024050215405672700_b20) 2016
Zhang (2024050215405672700_b23) 2020; 192
Zhang (2024050215405672700_b12) 2018; 37
Lu (2024050215405672700_b24) 2017; 12
References_xml – volume: 9
  start-page: 193
  year: 2012
  ident: 2024050215405672700_b2
  article-title: Cancer and radiation therapy: current advances and future directions
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.3635
– volume: 37
  start-page: 2663
  year: 2018
  ident: 2024050215405672700_b17
  article-title: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2845918
– volume: 126
  start-page: 2225
  year: 2020
  ident: 2024050215405672700_b1
  article-title: Annual report to the nation on the status of cancer, part I: National cancer statistics
  publication-title: Cancer
  doi: 10.1002/cncr.32802
– start-page: 36
  year: 2020
  ident: 2024050215405672700_b5
  article-title: Lung cancer tumor region segmentation using recurrent 3D-DenseUNet
  publication-title: MICCAI 2020 Thoracic Image Analysis (TIA) Workshop
– volume: 39
  start-page: 204
  year: 2019
  ident: 2024050215405672700_b26
  article-title: Co-Learning feature fusion maps from PET-CT images of lung cancer
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2923601
– volume: 126
  start-page: 76
  year: 2020
  ident: 2024050215405672700_b15
  article-title: AdaEn-Net: an ensemble of adaptive 2D-3D fully Convolutional networks for medical image segmentation
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.03.007
– volume: 191
  start-page: 525
  year: 2015
  ident: 2024050215405672700_b4
  article-title: A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: reducing the interobserver variability in multicentre clinical studies
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-015-0812-8
– volume: 37
  start-page: 2149
  year: 2018
  ident: 2024050215405672700_b12
  article-title: Automatic segmentation of acute ischemic stroke from DWI using 3-D fully Convolutional DenseNets
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2821244
– start-page: 1348
  year: 2019
  ident: 2024050215405672700_b18
  article-title: A Pipeline for Lung Tumor Detection and Segmentation from CT Scans Using Dilated Convolutional Neural Networks
– volume: 192
  year: 2020
  ident: 2024050215405672700_b23
  article-title: DENSE-INception U-net for medical image segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105395
– volume: 46
  start-page: 619
  year: 2019
  ident: 2024050215405672700_b27
  article-title: Simultaneous cosegmentation of tumors in PET-CT images using deep fully convolutional networks
  publication-title: Med Phys
  doi: 10.1002/mp.13331
– volume: 11769
  start-page: 221
  year: 2019
  ident: 2024050215405672700_b28
  article-title: Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation
  publication-title: Med Image Comput Comput Assist Interv
– volume: 392
  start-page: 277
  year: 2020
  ident: 2024050215405672700_b21
  article-title: Deep learning for variational multimodality tumor segmentation in PET/CT
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.099
– volume: 7
  start-page: 75591
  year: 2019
  ident: 2024050215405672700_b19
  article-title: Hsn: hybrid segmentation network for small cell lung cancer segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921434
– start-page: 234
  year: 2015
  ident: 2024050215405672700_b8
  article-title: Brox T. U-net: Convolutional networks for biomedical image segmentation
  publication-title: Med Image Comput Comput Assist Interv
– start-page: 589
  year: 2019
  ident: 2024050215405672700_b6
  article-title: Communications in Computer and Information Science
– start-page: 4700
  year: 2017
  ident: 2024050215405672700_b22
  article-title: Densely connected convolutional networks
– start-page: 3036
  year: 2016
  ident: 2024050215405672700_b9
  article-title: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation
– start-page: 565
  year: 2016
  ident: 2024050215405672700_b20
  article-title: V-Net: fully Convolutional neural networks for volumetric medical image segmentation
– start-page: 851
  year: 2018
  ident: 2024050215405672700_b10
  article-title: 3D anisotropic hybrid network: transferring Convolutional features from 2D images to 3D anisotropic volumes
  publication-title: Med Image Comput Comput Assist Interv
– volume: 179
  start-page: 21
  year: 2003
  ident: 2024050215405672700_b3
  article-title: The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-003-0976-5
– volume: 47
  start-page: 2248
  year: 2020
  ident: 2024050215405672700_b7
  article-title: CTumorGAN: a unified framework for automatic computed tomography tumor segmentation
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-04781-3
– volume: 64
  start-page: 015011
  year: 2018
  ident: 2024050215405672700_b25
  article-title: Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aaf44b
– volume: 39
  start-page: 447
  year: 2020
  ident: 2024050215405672700_b11
  article-title: 3D APA-Net: 3D Adversarial pyramid anisotropic Convolutional network for prostate segmentation in Mr images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2928056
– start-page: 3431
  year: 2015
  ident: 2024050215405672700_b13
  article-title: Fully Convolutional Networks for Semantic Segmentation
– volume: 12
  start-page: 171
  year: 2017
  ident: 2024050215405672700_b24
  article-title: Automatic 3D liver location and segmentation via convolutional neural network and graph cut
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-016-1467-3
– volume: 61
  start-page: 257
  year: 2020
  ident: 2024050215405672700_b14
  article-title: Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi
  publication-title: J Radiat Res
  doi: 10.1093/jrr/rrz086
– volume: 33
  start-page: 5909
  year: 2019
  ident: 2024050215405672700_b16
  article-title: A new ensemble learning framework for 3D biomedical image segmentation
  publication-title: Proc Conf AAAI Artif Intell
SSID ssj0007590
Score 2.4914126
Snippet A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20210038
SubjectTerms Humans
Imaging, Three-Dimensional
Lung Neoplasms - diagnostic imaging
Neural Networks, Computer
Radiographic Image Interpretation, Computer-Assisted - methods
Tomography, X-Ray Computed
Title Automatic segmentation of lung tumors on CT images based on a 2D & 3D hybrid convolutional neural network
URI https://www.ncbi.nlm.nih.gov/pubmed/34347535
https://www.proquest.com/docview/2558453642
https://pubmed.ncbi.nlm.nih.gov/PMC9328064
Volume 94
WOSCitedRecordID wos000698627000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DhAvCMZX-ZiMBLxUEUnsNPbj1DD2MCaEglaeIsdx1qI2mdpmGv8Afzfn2MmSDaTxwEsaXe3U6u-XO599d0boLUvBLCnBndQFBlOSSQc8WwZ3khMquUdFnSh8HJ6csNmMfxkMfjW5MBfLsCjY5SU__69QgwzA1qmz_wB3-1AQwD2ADleAHa63Av6g2pamDutGna1salE9KVxWOjWqWunzdUAyjceLldA1HrQpy7RIjP2oJgOJxvOfOpmrDku34wU0dfnL-qMOHu_tCNvqSJ1SFGuRLXqr9p_Mautpte2Q8tSuWB-Jsm1XGYtYnC1b3kWV6fxdFPNKdBcrfK8Ne7tSwKEDJtFsZCujc0PKHFAjs65SNicfN-TzTFb9DXUPvhvAkf7QhV3Bd3VNoZh-Ve1r1q6NQdTeD_RPoHfS9N5Bu34YcDZEu9HXw2_HrU0HoUlmssO3KRTQ_0P31_uTmxsey_XA285MJn6IHlgXBB8Y6jxCA1XsoXufbZDFHrpbRwXLzWO0aLmEu1zCZY41l7DhEgbJNMaGS7jmkhYJ7Ef4PSYRNkzCPSZhwyRsmfQExYcf4-mRY8_mcCRhdOsIfVBATnLpSSL8VASKERKCM--qIMhzlmU-E6GikwknPAtcQQSn0FLR1PVySp6iYVEW6jnCTKUTxvJcUCZoSgTLJBUBT3nOuQyZHKFx858m0tat18enLJM_IThC79rW56Zey1_avWngSUCh6l0yUaiy2iTgYzMaEPDLR-iZgat9EqGEgn8fjFDYA7JtoIu1978pFvO6aDv4SQym_y9uOb6X6P7V-_MKDbfrSr1Gd-QFvMrrfbQTzti-JelvyLq1Pg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+lung+tumors+on+CT+images+based+on+a+2D+%26+3D+hybrid+convolutional+neural+network&rft.jtitle=British+journal+of+radiology&rft.au=Gan%2C+Wutian&rft.au=Wang%2C+Hao&rft.au=Gu%2C+Hengle&rft.au=Duan%2C+Yanhua&rft.date=2021-10-01&rft.issn=0007-1285&rft.eissn=1748-880X&rft.volume=94&rft.issue=1126&rft_id=info:doi/10.1259%2Fbjr.20210038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1259_bjr_20210038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1285&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1285&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1285&client=summon