On the Mathematical Properties of the Structural Similarity Index

Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 21; H. 4; S. 1488 - 1499
Hauptverfasser: Brunet, D., Vrscay, E. R., Zhou Wang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.04.2012
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications.
AbstractList Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications.
Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications.Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications.
Author Zhou Wang
Vrscay, E. R.
Brunet, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Brunet
  fullname: Brunet, D.
  email: dbrunet@uwaterloo.ca
  organization: Dept. of Appl. Math- ematics, Univ. of WaterlooWaterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: E. R.
  surname: Vrscay
  fullname: Vrscay, E. R.
  email: ervrscay@uWaterloo.ca
  organization: Dept. of Appl. Math- ematics, Univ. of WaterlooWaterloo, Waterloo, ON, Canada
– sequence: 3
  surname: Zhou Wang
  fullname: Zhou Wang
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22042163$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtLxDAQxoMo7vq4C4L05qlrJk3T5ijiY2FlF9RzSNMpRvpYkxT0vze6ux48CMPMwPy-D-Y7Ivv90CMhZ0BnAFRePc9XM0YBZgyKjFGxR6YgOaSUcrYfd5oXaQFcTsiR92-UAs9BHJIJYxEAkU3J9bJPwismjzr2TgdrdJus3LBGFyz6ZGh-zk_BjSaMLh6fbGdb7Wz4TOZ9jR8n5KDRrcfT7TwmL3e3zzcP6WJ5P7-5XqQmK3lIS15xaJhoNBNCQs5rVmWsEMJgUdQmh6qs69I0UqLhDVDIdCkNAhR5JWgD2TG53Piu3fA-og-qs95g2-oeh9EryWmZ5bEiebElx6rDWq2d7bT7VLuvIyA2gHGD9w4bZWyIvw99cNq2Cqj6jlfFeNV3vGobbxTSP8Kd9z-S843EIuIvLmguc8qzL5Vdg3c
CODEN IIPRE4
CitedBy_id crossref_primary_10_3390_signals3030028
crossref_primary_10_1111_cgf_14054
crossref_primary_10_1109_TBC_2015_2424012
crossref_primary_10_1016_j_bspc_2024_107424
crossref_primary_10_1080_00207217_2020_1756442
crossref_primary_10_1016_j_biosx_2025_100619
crossref_primary_10_1109_TIP_2021_3053369
crossref_primary_10_1093_comjnl_bxac175
crossref_primary_10_1109_ACCESS_2024_3430968
crossref_primary_10_1007_s11242_015_0492_y
crossref_primary_10_1002_hbm_25424
crossref_primary_10_3390_s20154337
crossref_primary_10_1016_j_patcog_2025_111699
crossref_primary_10_1038_s41467_024_45282_3
crossref_primary_10_1007_s12145_021_00621_6
crossref_primary_10_3390_s23115242
crossref_primary_10_1007_s10846_022_01749_3
crossref_primary_10_1049_ipr2_13272
crossref_primary_10_3390_electronics14020330
crossref_primary_10_1002_cjce_22536
crossref_primary_10_3390_ani14030466
crossref_primary_10_1007_s11554_020_01061_z
crossref_primary_10_1016_j_optlaseng_2023_107507
crossref_primary_10_1145_2766891
crossref_primary_10_1038_s41598_023_43871_8
crossref_primary_10_1109_TUFFC_2022_3147097
crossref_primary_10_1109_TBME_2021_3105056
crossref_primary_10_1364_AO_405298
crossref_primary_10_3390_cancers15194715
crossref_primary_10_1016_j_asoc_2019_105928
crossref_primary_10_3390_app12083754
crossref_primary_10_1016_j_ymeth_2022_08_002
crossref_primary_10_1007_s10115_024_02199_z
crossref_primary_10_1109_TIP_2014_2367320
crossref_primary_10_1007_s00138_017_0869_8
crossref_primary_10_3390_diagnostics11050840
crossref_primary_10_1109_ACCESS_2025_3554989
crossref_primary_10_1364_OE_559801
crossref_primary_10_1007_s00366_025_02117_z
crossref_primary_10_1016_j_compbiomed_2023_107502
crossref_primary_10_3390_s21196645
crossref_primary_10_1109_TIM_2025_3554893
crossref_primary_10_1109_TMM_2025_3535296
crossref_primary_10_1007_s10851_017_0745_1
crossref_primary_10_1002_hbm_24599
crossref_primary_10_1007_s00530_024_01347_3
crossref_primary_10_3390_app11083460
crossref_primary_10_3390_rs16173233
crossref_primary_10_1007_s11227_024_06498_8
crossref_primary_10_1111_tgis_12590
crossref_primary_10_3390_ani14172464
crossref_primary_10_1016_j_isatra_2020_07_040
crossref_primary_10_1016_j_infsof_2025_107856
crossref_primary_10_1109_TIP_2012_2197011
crossref_primary_10_3390_rs16081394
crossref_primary_10_1155_2021_4304548
crossref_primary_10_1016_j_cej_2024_156891
crossref_primary_10_3390_jimaging8100269
crossref_primary_10_1109_TAES_2024_3450453
crossref_primary_10_1109_TMI_2019_2949171
crossref_primary_10_3390_e24030396
crossref_primary_10_1371_journal_pone_0208503
crossref_primary_10_1016_j_ejmp_2023_103144
crossref_primary_10_1109_TIM_2022_3219461
crossref_primary_10_1051_0004_6361_201629130
crossref_primary_10_1146_annurev_vision_100419_120301
crossref_primary_10_1109_ACCESS_2024_3448450
crossref_primary_10_1016_j_optlastec_2025_112727
crossref_primary_10_32604_cmc_2023_033417
crossref_primary_10_1007_s11042_022_13416_8
crossref_primary_10_1016_j_matcom_2022_11_005
crossref_primary_10_1109_TCYB_2019_2899005
crossref_primary_10_1007_s00371_020_01960_z
crossref_primary_10_1038_s42003_024_06110_y
crossref_primary_10_1016_j_neucom_2024_129159
crossref_primary_10_1038_s41746_021_00475_8
crossref_primary_10_1186_s13640_018_0244_3
crossref_primary_10_3390_app14051913
crossref_primary_10_1016_j_sigpro_2018_05_022
crossref_primary_10_1016_j_petsci_2021_10_007
crossref_primary_10_1109_TCI_2017_2786138
crossref_primary_10_1117_1_JEI_33_5_053052
crossref_primary_10_1038_s41598_022_22264_3
crossref_primary_10_1364_AO_54_006887
crossref_primary_10_1109_TIP_2024_3364507
crossref_primary_10_3390_s22093530
crossref_primary_10_1007_s00371_017_1384_7
crossref_primary_10_1016_j_procs_2025_07_133
crossref_primary_10_1016_j_jfranklin_2024_107391
crossref_primary_10_1016_j_bspc_2021_103401
crossref_primary_10_1016_j_cmpb_2024_108578
crossref_primary_10_1137_22M147637X
crossref_primary_10_1109_TIP_2020_3036752
crossref_primary_10_1007_s11042_024_19579_w
crossref_primary_10_1088_2515_7647_ac4afd
crossref_primary_10_1007_s10851_016_0635_y
crossref_primary_10_3934_ipi_2021059
crossref_primary_10_1109_TGRS_2013_2255296
crossref_primary_10_1007_s13311_023_01384_2
crossref_primary_10_1007_s11042_020_10035_z
crossref_primary_10_1016_j_phycom_2022_101897
crossref_primary_10_1016_j_asoc_2017_02_005
crossref_primary_10_1007_s42235_023_00332_2
crossref_primary_10_1109_TIP_2018_2844722
crossref_primary_10_1016_j_compgeo_2024_106489
crossref_primary_10_1029_2023AV001042
crossref_primary_10_1109_JOE_2023_3245760
crossref_primary_10_20965_jaciii_2018_p0323
crossref_primary_10_1109_TIP_2013_2270112
crossref_primary_10_7746_jkros_2024_19_2_203
crossref_primary_10_1016_j_spasta_2017_11_003
crossref_primary_10_1140_epjp_s13360_024_05403_9
crossref_primary_10_1364_AO_54_002929
crossref_primary_10_1016_j_aml_2012_03_001
crossref_primary_10_1002_VIW_20240004
crossref_primary_10_1371_journal_pone_0325768
crossref_primary_10_37920_sasj_2021_55_1_5
crossref_primary_10_3390_s130607599
crossref_primary_10_1186_s43074_023_00113_4
crossref_primary_10_1109_TIP_2015_2460015
crossref_primary_10_1109_TNNLS_2021_3107449
crossref_primary_10_3390_rs16163107
crossref_primary_10_1007_s00500_021_06418_5
crossref_primary_10_1103_PhysRevResearch_4_033223
crossref_primary_10_3389_fmed_2025_1536239
crossref_primary_10_1371_journal_pcbi_1010505
crossref_primary_10_1016_j_istruc_2022_11_067
crossref_primary_10_1016_j_compositesb_2022_110343
crossref_primary_10_1007_s11042_016_3850_z
crossref_primary_10_1109_JSTARS_2025_3526260
crossref_primary_10_1109_TASE_2024_3391017
crossref_primary_10_1016_j_isprsjprs_2014_05_002
crossref_primary_10_1007_s10278_022_00744_2
crossref_primary_10_1016_j_jappgeo_2025_105951
crossref_primary_10_1007_s11042_022_14000_w
crossref_primary_10_1007_s11042_024_19527_8
crossref_primary_10_1109_TIP_2012_2231090
crossref_primary_10_3390_math13101596
crossref_primary_10_1109_TIP_2016_2598492
crossref_primary_10_1109_TCI_2025_3561660
crossref_primary_10_3390_app122211514
crossref_primary_10_1016_j_iswa_2023_200270
crossref_primary_10_1109_TPAMI_2020_3045810
crossref_primary_10_1007_s10921_015_0289_5
crossref_primary_10_1109_TMI_2022_3230635
crossref_primary_10_1007_s11004_023_10095_5
crossref_primary_10_3390_math13121976
crossref_primary_10_1016_j_eswa_2025_128071
crossref_primary_10_1093_jge_gxaf023
crossref_primary_10_1109_TIP_2013_2292332
crossref_primary_10_1007_s00371_020_01930_5
crossref_primary_10_1109_TSMC_2024_3480457
crossref_primary_10_1007_s41965_025_00186_z
crossref_primary_10_3390_app10124282
crossref_primary_10_1117_1_JEI_33_2_023024
crossref_primary_10_1007_s00371_022_02572_5
crossref_primary_10_3390_diagnostics13040747
crossref_primary_10_1007_s11042_023_15466_y
crossref_primary_10_1007_s10851_018_0866_1
crossref_primary_10_1016_j_dsp_2024_104462
crossref_primary_10_5194_bg_19_1777_2022
crossref_primary_10_1016_j_sigpro_2013_10_033
crossref_primary_10_3390_s150100248
crossref_primary_10_1007_s43538_025_00509_9
crossref_primary_10_1007_s40194_021_01211_2
crossref_primary_10_1002_jbio_202400106
crossref_primary_10_3390_cancers16030572
crossref_primary_10_1145_3643892
crossref_primary_10_1109_ACCESS_2023_3300789
crossref_primary_10_1038_s41598_024_56706_x
crossref_primary_10_1016_j_measurement_2024_116577
crossref_primary_10_1016_j_ndteint_2025_103328
crossref_primary_10_1109_TMC_2025_3550815
crossref_primary_10_1016_j_jmbbm_2025_107007
crossref_primary_10_3390_rs14205110
crossref_primary_10_1093_pnasnexus_pgac065
crossref_primary_10_3390_s25113523
crossref_primary_10_1016_j_sigpro_2013_10_020
crossref_primary_10_1111_gean_12028
crossref_primary_10_1016_j_neucom_2021_05_008
crossref_primary_10_1088_1361_6420_aa99cf
crossref_primary_10_1016_j_displa_2024_102669
crossref_primary_10_1016_j_ecoinf_2020_101169
crossref_primary_10_3390_electronics13163309
crossref_primary_10_1088_1748_0221_19_08_P08012
crossref_primary_10_1007_s12518_025_00629_3
crossref_primary_10_1016_j_daach_2025_e00451
crossref_primary_10_1080_19479832_2016_1273259
crossref_primary_10_1016_j_ultramic_2021_113451
crossref_primary_10_1109_TGRS_2021_3110180
crossref_primary_10_3847_1538_4357_add695
crossref_primary_10_1016_j_rse_2016_07_002
crossref_primary_10_1109_JPROC_2013_2257632
crossref_primary_10_3390_rs15174205
crossref_primary_10_1016_j_ins_2016_03_027
crossref_primary_10_1088_1757_899X_533_1_012057
crossref_primary_10_1016_j_neucom_2020_10_018
crossref_primary_10_1109_ACCESS_2020_3003874
crossref_primary_10_3390_math13121947
crossref_primary_10_1002_prot_24640
crossref_primary_10_1016_j_jiixd_2023_08_001
crossref_primary_10_1089_big_2021_0085
crossref_primary_10_1016_j_neucom_2025_129672
crossref_primary_10_1016_j_ndteint_2024_103196
crossref_primary_10_1016_j_sigpro_2017_11_015
crossref_primary_10_1016_j_optcom_2018_12_081
crossref_primary_10_1016_j_bspc_2024_107197
crossref_primary_10_1109_TIM_2024_3441018
crossref_primary_10_3390_rs15153750
crossref_primary_10_1002_ima_22440
crossref_primary_10_1016_j_imavis_2024_104922
crossref_primary_10_1109_JSTARS_2017_2658678
crossref_primary_10_1016_j_neucom_2017_04_002
crossref_primary_10_1007_s11042_025_20978_w
crossref_primary_10_1109_TMM_2016_2535254
crossref_primary_10_1007_s11081_020_09525_8
crossref_primary_10_1007_s13369_015_1596_y
crossref_primary_10_1109_JSTARS_2017_2707532
crossref_primary_10_1109_TMI_2018_2875829
crossref_primary_10_1038_s41597_023_02682_2
crossref_primary_10_3390_technologies12110214
crossref_primary_10_15625_1813_9663_20178
crossref_primary_10_1109_JIOT_2021_3059735
crossref_primary_10_1007_s40747_023_01333_8
crossref_primary_10_1088_2057_1976_abc633
crossref_primary_10_1109_TBC_2023_3294835
crossref_primary_10_1016_j_optlaseng_2022_107445
crossref_primary_10_1145_3712263
crossref_primary_10_1002_stvr_1833
crossref_primary_10_1080_10255842_2025_2532807
crossref_primary_10_1109_TCSVT_2016_2580398
crossref_primary_10_2478_caim_2024_0016
crossref_primary_10_1007_s11760_024_03793_y
crossref_primary_10_1049_iet_cvi_2014_0261
crossref_primary_10_1007_s00371_024_03270_0
crossref_primary_10_1016_j_egyai_2025_100485
crossref_primary_10_1111_stan_12060
crossref_primary_10_1007_s11042_025_21120_6
crossref_primary_10_1007_s11760_021_02051_9
crossref_primary_10_1007_s40012_016_0130_z
crossref_primary_10_1016_j_iswa_2025_200578
crossref_primary_10_1115_1_4065755
crossref_primary_10_1016_j_jappgeo_2024_105539
crossref_primary_10_1109_JIOT_2025_3573756
crossref_primary_10_3390_diagnostics12040967
crossref_primary_10_1088_1402_4896_ad2e5b
crossref_primary_10_1007_s11042_021_10667_9
crossref_primary_10_1007_s00109_025_02575_4
crossref_primary_10_1007_s11042_021_11172_9
crossref_primary_10_1371_journal_pone_0124759
crossref_primary_10_3390_fire6060237
crossref_primary_10_7717_peerj_10747
crossref_primary_10_1109_TIM_2025_3529045
crossref_primary_10_1109_TIP_2016_2545863
crossref_primary_10_1109_TIP_2023_3327003
crossref_primary_10_1109_JSTSP_2023_3258253
crossref_primary_10_1007_s13246_023_01280_1
Cites_doi 10.1109/ICASSP.2011.5946605
10.2307/2031742
10.1109/ICASSP.2011.5946533
10.1109/TIP.2010.2092435
10.1007/s10043-009-0119-z
10.2307/2688275
10.1109/ICIP.2008.4711973
10.1109/TIP.2003.819861
10.1109/TIP.2008.2001400
10.1007/978-3-642-21596-4_27
10.2140/pjm.1982.101.389
10.1109/ICIP.2007.4379107
10.1155/2011/857959
10.1109/97.995823
10.1167/8.12.8
10.1007/978-3-642-13772-3_2
10.1109/DCC.2009.15
10.1016/S0031-3203(02)00325-4
10.1017/CBO9780511804441
10.2200/S00010ED1V01Y200508IVM003
10.1109/TIP.2011.2109730
10.1109/ACSSC.2003.1292216
10.1016/j.jmaa.2004.07.034
10.1109/MSP.2008.930649
10.1109/ICICISYS.2009.5357689
10.1109/TIT.2004.838101
10.1109/ICIP.1994.413502
10.1109/TIP.2008.921328
10.1109/TIP.2005.859378
10.1117/12.537129
10.1364/JOSAA.27.000852
10.1109/TIP.2005.860325
10.1016/j.jmaa.2005.03.087
10.1109/TIP.2007.901820
10.1109/ACSSC.2009.5469973
10.1109/ICIP.2006.313051
10.1109/ICASSP.2008.4517722
10.1016/S0022-247X(02)00219-6
10.1109/TCSVT.2010.2087472
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TIP.2011.2173206
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1499
ExternalDocumentID 22042163
10_1109_TIP_2011_2173206
6059504
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c384t-84b41f26fa2669154d2b32766ce77dc51b8dd8cf99ec4f1013a89ce1175b60f13
IEDL.DBID RIE
ISICitedReferencesCount 396
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302181800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Wed Oct 01 11:55:36 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Sat Nov 29 03:20:47 EST 2025
Tue Nov 18 20:59:37 EST 2025
Tue Aug 26 16:57:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-84b41f26fa2669154d2b32766ce77dc51b8dd8cf99ec4f1013a89ce1175b60f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22042163
PQID 940835835
PQPubID 23479
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TIP_2011_2173206
proquest_miscellaneous_940835835
crossref_primary_10_1109_TIP_2011_2173206
pubmed_primary_22042163
ieee_primary_6059504
PublicationCentury 2000
PublicationDate 2012-April
2012-04-00
2012-Apr
20120401
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ponomarenko (ref43) 2008
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
brunet (ref21) 2010; 6111
li (ref47) 2010; 7744
lu (ref45) 1997
ref24
ref23
ref26
ref25
ref20
ref22
ref44
teo (ref11) 1994; 2
ponomarenko (ref42) 2009
sheikh (ref41) 2010
ref27
ref29
ref8
yianilos (ref34) 1991
ref7
(ref46) 2005
ref4
ref3
ref6
ref5
ref40
larson (ref9) 2010; 19
wang (ref28) 2004; 5292
References_xml – ident: ref16
  doi: 10.1109/ICASSP.2011.5946605
– ident: ref37
  doi: 10.2307/2031742
– ident: ref27
  doi: 10.1109/ICASSP.2011.5946533
– ident: ref6
  doi: 10.1109/TIP.2010.2092435
– ident: ref20
  doi: 10.1007/s10043-009-0119-z
– ident: ref36
  doi: 10.2307/2688275
– ident: ref40
  doi: 10.1109/ICIP.2008.4711973
– ident: ref4
  doi: 10.1109/TIP.2003.819861
– ident: ref23
  doi: 10.1109/TIP.2008.2001400
– ident: ref38
  doi: 10.1007/978-3-642-21596-4_27
– ident: ref31
  doi: 10.2140/pjm.1982.101.389
– ident: ref22
  doi: 10.1109/ICIP.2007.4379107
– year: 2010
  ident: ref41
  publication-title: Image and Video Quality Assessment Research at LIVE
– year: 1997
  ident: ref45
  publication-title: Fractal Imaging
– ident: ref30
  doi: 10.1155/2011/857959
– ident: ref3
  doi: 10.1109/97.995823
– ident: ref29
  doi: 10.1167/8.12.8
– year: 2005
  ident: ref46
  publication-title: Handbook of Generalized Convexity and Generalized Monotonicity
– volume: 6111
  start-page: 11
  year: 2010
  ident: ref21
  article-title: Structural similarity-based approximation of signals and images using orthogonal bases
  publication-title: Proc Int Conf Image Anal Recognit
  doi: 10.1007/978-3-642-13772-3_2
– ident: ref24
  doi: 10.1109/DCC.2009.15
– ident: ref12
  doi: 10.1016/S0031-3203(02)00325-4
– ident: ref44
  doi: 10.1017/CBO9780511804441
– ident: ref2
  doi: 10.2200/S00010ED1V01Y200508IVM003
– ident: ref10
  doi: 10.1109/TIP.2011.2109730
– ident: ref5
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref33
  doi: 10.1016/j.jmaa.2004.07.034
– year: 1991
  ident: ref34
  publication-title: Normalized Forms for Two Common Metrics
– ident: ref1
  doi: 10.1109/MSP.2008.930649
– year: 2008
  ident: ref43
  publication-title: Tampere image database 2008 TID2008
– ident: ref25
  doi: 10.1109/ICICISYS.2009.5357689
– ident: ref35
  doi: 10.1109/TIT.2004.838101
– volume: 2
  start-page: 982
  year: 1994
  ident: ref11
  article-title: Perceptual image distortion
  publication-title: Proc IEEE Int Conf Image Process
  doi: 10.1109/ICIP.1994.413502
– ident: ref19
  doi: 10.1109/TIP.2008.921328
– ident: ref7
  doi: 10.1109/TIP.2005.859378
– volume: 7744
  start-page: 1j
  year: 2010
  ident: ref47
  article-title: Collective sensing: A fixed-point approach in the metric space
  publication-title: Proc SPIE Visual Comm Image Process
– volume: 5292
  start-page: 99
  year: 2004
  ident: ref28
  article-title: Stimulus synthesis for efficient evaluation and refinement of perceptual image quality metrics
  publication-title: Proc Human Vis Electron Imag IX-SPIE
  doi: 10.1117/12.537129
– ident: ref14
  doi: 10.1364/JOSAA.27.000852
– volume: 19
  start-page: 11006-1
  year: 2010
  ident: ref9
  article-title: Most apparent distortion: Full reference image quality assessment and the role of strategy
  publication-title: J Electron Imag
– start-page: 1
  year: 2009
  ident: ref42
  article-title: Metrics performance comparison for color image database
  publication-title: Proc 4th Int Workshop Video Process Quality Metrics Consumer Electron
– ident: ref13
  doi: 10.1109/TIP.2005.860325
– ident: ref39
  doi: 10.1016/j.jmaa.2005.03.087
– ident: ref8
  doi: 10.1109/TIP.2007.901820
– ident: ref18
  doi: 10.1109/ACSSC.2009.5469973
– ident: ref15
  doi: 10.1109/ICIP.2006.313051
– ident: ref17
  doi: 10.1109/ICASSP.2008.4517722
– ident: ref32
  doi: 10.1016/S0022-247X(02)00219-6
– ident: ref26
  doi: 10.1109/TCSVT.2010.2087472
SSID ssj0014516
Score 2.556542
Snippet Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1488
SubjectTerms Algorithms
Artificial Intelligence
Cone metrics
Correlation
Distortion measurement
Extraterrestrial measurements
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Indexes
normalized metrics
Optimization
Pattern Recognition, Automated - methods
perceptually optimized algorithms and methods
quality metrics and assessment tools
quasi-convexity and convexity
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
structural similarity (SSIM) index
Subtraction Technique
Title On the Mathematical Properties of the Structural Similarity Index
URI https://ieeexplore.ieee.org/document/6059504
https://www.ncbi.nlm.nih.gov/pubmed/22042163
https://www.proquest.com/docview/940835835
Volume 21
WOSCitedRecordID wos000302181800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjB92N9kYMXwbptkuZxFFH0oC6osLfS5gEL2pVd9fc7SbtFQQWhh0InaZiZMF8yyTcAx9TmMtMuS1TGTMIxCCSly2jiTZmXnlqryzQWm5B3d2o41IM5OO3uwjjn4uEzdxZeYy7fjs172CrrI_TWeSD_nJdSNHe1uoxBKDgbM5u5TCTC_llKMtX9x5tBw9WJ8JvRNFQtohSdNRPsWzSK5VV-R5ox4lyt_m-sa7DSIkty3rjCOsy5egNWW5RJ2jk83YDlLxSEm3B-XxPEgOS2o2_FPgZhh34SqFbJ2MfPD5FmNlB0kIfRywiXw4jeyU2gWtyCp6vLx4vrpC2rkBim-FuieMUzT4UvMThrhFCWVoxKIYyT0po8q5S1ynitneEepywrlTYucHpWIvUZ24aFely7XSCVcVoo6nVVWgxseUW5qDi3TKOYUKwH_Zl6C9NyjofSF89FXHukukDbFME2RWubHpx0LV4bvo0_ZDeD3ju5VuU9IDMLFjhXQgKkrN34fVpoHgAnPj3YaSzbtZ05xN7Pfe7DEv6ZNkd2DmABle4OYdF8vI2mkyP0x6E6iv74CbiH2Co
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6ICuqD98u85sEXwbo2SdvkUcSxoc6BE3wrbS4w0E429fd7knZFQQWhD4EmIeSccL7kJN8HcEp1nEbSRIGImAo4BoEgNxENrMrj3FKtZR56sYm03xdPT3IwB-fNWxhjjL98Zi5c0efy9Vi9u6OyNkJvGTvyzwWnnFW_1mpyBk5y1uc24zRIEfjPkpKhbA97g4qtEwE4o6HTLaIU3TVK2Ld45AVWfseaPuZ01v432nVYrbEluaycYQPmTLkJazXOJPUqnm7CyhcSwi24vC8JokBy1xC4Yh8Dd0Y_cWSrZGz97wdPNOtIOsjD6GWEG2LE76TnyBa34bFzPbzqBrWwQqCY4G-B4AWPLE1sjuFZIojStGA0TRJl0lSrOCqE1kJZKY3iFhcty4VUxrF6FkloI7YD8-W4NHtACmVkIqiVRa4xtMUF5UnBuWYSqyWCtaA9m95M1azjTvziOfO7j1BmaJvM2SarbdOCs6bFa8W48UfdLTfvTb16yltAZhbMcLW4FEhemvH7NJPcQU78WrBbWbZpO3OI_Z_7PIGl7vDuNrvt9W8OYBlHQasLPIcwjwYwR7CoPt5G08mx98pPDrzaiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Mathematical+Properties+of+the+Structural+Similarity+Index&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Brunet%2C+D.&rft.au=Vrscay%2C+E.+R.&rft.au=Zhou+Wang&rft.date=2012-04-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=21&rft.issue=4&rft.spage=1488&rft.epage=1499&rft_id=info:doi/10.1109%2FTIP.2011.2173206&rft_id=info%3Apmid%2F22042163&rft.externalDocID=6059504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon