On the Mathematical Properties of the Structural Similarity Index
Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 21; H. 4; S. 1488 - 1499 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.04.2012
|
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications. |
|---|---|
| AbstractList | Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications.Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications. Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications. |
| Author | Zhou Wang Vrscay, E. R. Brunet, D. |
| Author_xml | – sequence: 1 givenname: D. surname: Brunet fullname: Brunet, D. email: dbrunet@uwaterloo.ca organization: Dept. of Appl. Math- ematics, Univ. of WaterlooWaterloo, Waterloo, ON, Canada – sequence: 2 givenname: E. R. surname: Vrscay fullname: Vrscay, E. R. email: ervrscay@uWaterloo.ca organization: Dept. of Appl. Math- ematics, Univ. of WaterlooWaterloo, Waterloo, ON, Canada – sequence: 3 surname: Zhou Wang fullname: Zhou Wang organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22042163$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtLxDAQxoMo7vq4C4L05qlrJk3T5ijiY2FlF9RzSNMpRvpYkxT0vze6ux48CMPMwPy-D-Y7Ivv90CMhZ0BnAFRePc9XM0YBZgyKjFGxR6YgOaSUcrYfd5oXaQFcTsiR92-UAs9BHJIJYxEAkU3J9bJPwismjzr2TgdrdJus3LBGFyz6ZGh-zk_BjSaMLh6fbGdb7Wz4TOZ9jR8n5KDRrcfT7TwmL3e3zzcP6WJ5P7-5XqQmK3lIS15xaJhoNBNCQs5rVmWsEMJgUdQmh6qs69I0UqLhDVDIdCkNAhR5JWgD2TG53Piu3fA-og-qs95g2-oeh9EryWmZ5bEiebElx6rDWq2d7bT7VLuvIyA2gHGD9w4bZWyIvw99cNq2Cqj6jlfFeNV3vGobbxTSP8Kd9z-S843EIuIvLmguc8qzL5Vdg3c |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_3390_signals3030028 crossref_primary_10_1111_cgf_14054 crossref_primary_10_1109_TBC_2015_2424012 crossref_primary_10_1016_j_bspc_2024_107424 crossref_primary_10_1080_00207217_2020_1756442 crossref_primary_10_1016_j_biosx_2025_100619 crossref_primary_10_1109_TIP_2021_3053369 crossref_primary_10_1093_comjnl_bxac175 crossref_primary_10_1109_ACCESS_2024_3430968 crossref_primary_10_1007_s11242_015_0492_y crossref_primary_10_1002_hbm_25424 crossref_primary_10_3390_s20154337 crossref_primary_10_1016_j_patcog_2025_111699 crossref_primary_10_1038_s41467_024_45282_3 crossref_primary_10_1007_s12145_021_00621_6 crossref_primary_10_3390_s23115242 crossref_primary_10_1007_s10846_022_01749_3 crossref_primary_10_1049_ipr2_13272 crossref_primary_10_3390_electronics14020330 crossref_primary_10_1002_cjce_22536 crossref_primary_10_3390_ani14030466 crossref_primary_10_1007_s11554_020_01061_z crossref_primary_10_1016_j_optlaseng_2023_107507 crossref_primary_10_1145_2766891 crossref_primary_10_1038_s41598_023_43871_8 crossref_primary_10_1109_TUFFC_2022_3147097 crossref_primary_10_1109_TBME_2021_3105056 crossref_primary_10_1364_AO_405298 crossref_primary_10_3390_cancers15194715 crossref_primary_10_1016_j_asoc_2019_105928 crossref_primary_10_3390_app12083754 crossref_primary_10_1016_j_ymeth_2022_08_002 crossref_primary_10_1007_s10115_024_02199_z crossref_primary_10_1109_TIP_2014_2367320 crossref_primary_10_1007_s00138_017_0869_8 crossref_primary_10_3390_diagnostics11050840 crossref_primary_10_1109_ACCESS_2025_3554989 crossref_primary_10_1364_OE_559801 crossref_primary_10_1007_s00366_025_02117_z crossref_primary_10_1016_j_compbiomed_2023_107502 crossref_primary_10_3390_s21196645 crossref_primary_10_1109_TIM_2025_3554893 crossref_primary_10_1109_TMM_2025_3535296 crossref_primary_10_1007_s10851_017_0745_1 crossref_primary_10_1002_hbm_24599 crossref_primary_10_1007_s00530_024_01347_3 crossref_primary_10_3390_app11083460 crossref_primary_10_3390_rs16173233 crossref_primary_10_1007_s11227_024_06498_8 crossref_primary_10_1111_tgis_12590 crossref_primary_10_3390_ani14172464 crossref_primary_10_1016_j_isatra_2020_07_040 crossref_primary_10_1016_j_infsof_2025_107856 crossref_primary_10_1109_TIP_2012_2197011 crossref_primary_10_3390_rs16081394 crossref_primary_10_1155_2021_4304548 crossref_primary_10_1016_j_cej_2024_156891 crossref_primary_10_3390_jimaging8100269 crossref_primary_10_1109_TAES_2024_3450453 crossref_primary_10_1109_TMI_2019_2949171 crossref_primary_10_3390_e24030396 crossref_primary_10_1371_journal_pone_0208503 crossref_primary_10_1016_j_ejmp_2023_103144 crossref_primary_10_1109_TIM_2022_3219461 crossref_primary_10_1051_0004_6361_201629130 crossref_primary_10_1146_annurev_vision_100419_120301 crossref_primary_10_1109_ACCESS_2024_3448450 crossref_primary_10_1016_j_optlastec_2025_112727 crossref_primary_10_32604_cmc_2023_033417 crossref_primary_10_1007_s11042_022_13416_8 crossref_primary_10_1016_j_matcom_2022_11_005 crossref_primary_10_1109_TCYB_2019_2899005 crossref_primary_10_1007_s00371_020_01960_z crossref_primary_10_1038_s42003_024_06110_y crossref_primary_10_1016_j_neucom_2024_129159 crossref_primary_10_1038_s41746_021_00475_8 crossref_primary_10_1186_s13640_018_0244_3 crossref_primary_10_3390_app14051913 crossref_primary_10_1016_j_sigpro_2018_05_022 crossref_primary_10_1016_j_petsci_2021_10_007 crossref_primary_10_1109_TCI_2017_2786138 crossref_primary_10_1117_1_JEI_33_5_053052 crossref_primary_10_1038_s41598_022_22264_3 crossref_primary_10_1364_AO_54_006887 crossref_primary_10_1109_TIP_2024_3364507 crossref_primary_10_3390_s22093530 crossref_primary_10_1007_s00371_017_1384_7 crossref_primary_10_1016_j_procs_2025_07_133 crossref_primary_10_1016_j_jfranklin_2024_107391 crossref_primary_10_1016_j_bspc_2021_103401 crossref_primary_10_1016_j_cmpb_2024_108578 crossref_primary_10_1137_22M147637X crossref_primary_10_1109_TIP_2020_3036752 crossref_primary_10_1007_s11042_024_19579_w crossref_primary_10_1088_2515_7647_ac4afd crossref_primary_10_1007_s10851_016_0635_y crossref_primary_10_3934_ipi_2021059 crossref_primary_10_1109_TGRS_2013_2255296 crossref_primary_10_1007_s13311_023_01384_2 crossref_primary_10_1007_s11042_020_10035_z crossref_primary_10_1016_j_phycom_2022_101897 crossref_primary_10_1016_j_asoc_2017_02_005 crossref_primary_10_1007_s42235_023_00332_2 crossref_primary_10_1109_TIP_2018_2844722 crossref_primary_10_1016_j_compgeo_2024_106489 crossref_primary_10_1029_2023AV001042 crossref_primary_10_1109_JOE_2023_3245760 crossref_primary_10_20965_jaciii_2018_p0323 crossref_primary_10_1109_TIP_2013_2270112 crossref_primary_10_7746_jkros_2024_19_2_203 crossref_primary_10_1016_j_spasta_2017_11_003 crossref_primary_10_1140_epjp_s13360_024_05403_9 crossref_primary_10_1364_AO_54_002929 crossref_primary_10_1016_j_aml_2012_03_001 crossref_primary_10_1002_VIW_20240004 crossref_primary_10_1371_journal_pone_0325768 crossref_primary_10_37920_sasj_2021_55_1_5 crossref_primary_10_3390_s130607599 crossref_primary_10_1186_s43074_023_00113_4 crossref_primary_10_1109_TIP_2015_2460015 crossref_primary_10_1109_TNNLS_2021_3107449 crossref_primary_10_3390_rs16163107 crossref_primary_10_1007_s00500_021_06418_5 crossref_primary_10_1103_PhysRevResearch_4_033223 crossref_primary_10_3389_fmed_2025_1536239 crossref_primary_10_1371_journal_pcbi_1010505 crossref_primary_10_1016_j_istruc_2022_11_067 crossref_primary_10_1016_j_compositesb_2022_110343 crossref_primary_10_1007_s11042_016_3850_z crossref_primary_10_1109_JSTARS_2025_3526260 crossref_primary_10_1109_TASE_2024_3391017 crossref_primary_10_1016_j_isprsjprs_2014_05_002 crossref_primary_10_1007_s10278_022_00744_2 crossref_primary_10_1016_j_jappgeo_2025_105951 crossref_primary_10_1007_s11042_022_14000_w crossref_primary_10_1007_s11042_024_19527_8 crossref_primary_10_1109_TIP_2012_2231090 crossref_primary_10_3390_math13101596 crossref_primary_10_1109_TIP_2016_2598492 crossref_primary_10_1109_TCI_2025_3561660 crossref_primary_10_3390_app122211514 crossref_primary_10_1016_j_iswa_2023_200270 crossref_primary_10_1109_TPAMI_2020_3045810 crossref_primary_10_1007_s10921_015_0289_5 crossref_primary_10_1109_TMI_2022_3230635 crossref_primary_10_1007_s11004_023_10095_5 crossref_primary_10_3390_math13121976 crossref_primary_10_1016_j_eswa_2025_128071 crossref_primary_10_1093_jge_gxaf023 crossref_primary_10_1109_TIP_2013_2292332 crossref_primary_10_1007_s00371_020_01930_5 crossref_primary_10_1109_TSMC_2024_3480457 crossref_primary_10_1007_s41965_025_00186_z crossref_primary_10_3390_app10124282 crossref_primary_10_1117_1_JEI_33_2_023024 crossref_primary_10_1007_s00371_022_02572_5 crossref_primary_10_3390_diagnostics13040747 crossref_primary_10_1007_s11042_023_15466_y crossref_primary_10_1007_s10851_018_0866_1 crossref_primary_10_1016_j_dsp_2024_104462 crossref_primary_10_5194_bg_19_1777_2022 crossref_primary_10_1016_j_sigpro_2013_10_033 crossref_primary_10_3390_s150100248 crossref_primary_10_1007_s43538_025_00509_9 crossref_primary_10_1007_s40194_021_01211_2 crossref_primary_10_1002_jbio_202400106 crossref_primary_10_3390_cancers16030572 crossref_primary_10_1145_3643892 crossref_primary_10_1109_ACCESS_2023_3300789 crossref_primary_10_1038_s41598_024_56706_x crossref_primary_10_1016_j_measurement_2024_116577 crossref_primary_10_1016_j_ndteint_2025_103328 crossref_primary_10_1109_TMC_2025_3550815 crossref_primary_10_1016_j_jmbbm_2025_107007 crossref_primary_10_3390_rs14205110 crossref_primary_10_1093_pnasnexus_pgac065 crossref_primary_10_3390_s25113523 crossref_primary_10_1016_j_sigpro_2013_10_020 crossref_primary_10_1111_gean_12028 crossref_primary_10_1016_j_neucom_2021_05_008 crossref_primary_10_1088_1361_6420_aa99cf crossref_primary_10_1016_j_displa_2024_102669 crossref_primary_10_1016_j_ecoinf_2020_101169 crossref_primary_10_3390_electronics13163309 crossref_primary_10_1088_1748_0221_19_08_P08012 crossref_primary_10_1007_s12518_025_00629_3 crossref_primary_10_1016_j_daach_2025_e00451 crossref_primary_10_1080_19479832_2016_1273259 crossref_primary_10_1016_j_ultramic_2021_113451 crossref_primary_10_1109_TGRS_2021_3110180 crossref_primary_10_3847_1538_4357_add695 crossref_primary_10_1016_j_rse_2016_07_002 crossref_primary_10_1109_JPROC_2013_2257632 crossref_primary_10_3390_rs15174205 crossref_primary_10_1016_j_ins_2016_03_027 crossref_primary_10_1088_1757_899X_533_1_012057 crossref_primary_10_1016_j_neucom_2020_10_018 crossref_primary_10_1109_ACCESS_2020_3003874 crossref_primary_10_3390_math13121947 crossref_primary_10_1002_prot_24640 crossref_primary_10_1016_j_jiixd_2023_08_001 crossref_primary_10_1089_big_2021_0085 crossref_primary_10_1016_j_neucom_2025_129672 crossref_primary_10_1016_j_ndteint_2024_103196 crossref_primary_10_1016_j_sigpro_2017_11_015 crossref_primary_10_1016_j_optcom_2018_12_081 crossref_primary_10_1016_j_bspc_2024_107197 crossref_primary_10_1109_TIM_2024_3441018 crossref_primary_10_3390_rs15153750 crossref_primary_10_1002_ima_22440 crossref_primary_10_1016_j_imavis_2024_104922 crossref_primary_10_1109_JSTARS_2017_2658678 crossref_primary_10_1016_j_neucom_2017_04_002 crossref_primary_10_1007_s11042_025_20978_w crossref_primary_10_1109_TMM_2016_2535254 crossref_primary_10_1007_s11081_020_09525_8 crossref_primary_10_1007_s13369_015_1596_y crossref_primary_10_1109_JSTARS_2017_2707532 crossref_primary_10_1109_TMI_2018_2875829 crossref_primary_10_1038_s41597_023_02682_2 crossref_primary_10_3390_technologies12110214 crossref_primary_10_15625_1813_9663_20178 crossref_primary_10_1109_JIOT_2021_3059735 crossref_primary_10_1007_s40747_023_01333_8 crossref_primary_10_1088_2057_1976_abc633 crossref_primary_10_1109_TBC_2023_3294835 crossref_primary_10_1016_j_optlaseng_2022_107445 crossref_primary_10_1145_3712263 crossref_primary_10_1002_stvr_1833 crossref_primary_10_1080_10255842_2025_2532807 crossref_primary_10_1109_TCSVT_2016_2580398 crossref_primary_10_2478_caim_2024_0016 crossref_primary_10_1007_s11760_024_03793_y crossref_primary_10_1049_iet_cvi_2014_0261 crossref_primary_10_1007_s00371_024_03270_0 crossref_primary_10_1016_j_egyai_2025_100485 crossref_primary_10_1111_stan_12060 crossref_primary_10_1007_s11042_025_21120_6 crossref_primary_10_1007_s11760_021_02051_9 crossref_primary_10_1007_s40012_016_0130_z crossref_primary_10_1016_j_iswa_2025_200578 crossref_primary_10_1115_1_4065755 crossref_primary_10_1016_j_jappgeo_2024_105539 crossref_primary_10_1109_JIOT_2025_3573756 crossref_primary_10_3390_diagnostics12040967 crossref_primary_10_1088_1402_4896_ad2e5b crossref_primary_10_1007_s11042_021_10667_9 crossref_primary_10_1007_s00109_025_02575_4 crossref_primary_10_1007_s11042_021_11172_9 crossref_primary_10_1371_journal_pone_0124759 crossref_primary_10_3390_fire6060237 crossref_primary_10_7717_peerj_10747 crossref_primary_10_1109_TIM_2025_3529045 crossref_primary_10_1109_TIP_2016_2545863 crossref_primary_10_1109_TIP_2023_3327003 crossref_primary_10_1109_JSTSP_2023_3258253 crossref_primary_10_1007_s13246_023_01280_1 |
| Cites_doi | 10.1109/ICASSP.2011.5946605 10.2307/2031742 10.1109/ICASSP.2011.5946533 10.1109/TIP.2010.2092435 10.1007/s10043-009-0119-z 10.2307/2688275 10.1109/ICIP.2008.4711973 10.1109/TIP.2003.819861 10.1109/TIP.2008.2001400 10.1007/978-3-642-21596-4_27 10.2140/pjm.1982.101.389 10.1109/ICIP.2007.4379107 10.1155/2011/857959 10.1109/97.995823 10.1167/8.12.8 10.1007/978-3-642-13772-3_2 10.1109/DCC.2009.15 10.1016/S0031-3203(02)00325-4 10.1017/CBO9780511804441 10.2200/S00010ED1V01Y200508IVM003 10.1109/TIP.2011.2109730 10.1109/ACSSC.2003.1292216 10.1016/j.jmaa.2004.07.034 10.1109/MSP.2008.930649 10.1109/ICICISYS.2009.5357689 10.1109/TIT.2004.838101 10.1109/ICIP.1994.413502 10.1109/TIP.2008.921328 10.1109/TIP.2005.859378 10.1117/12.537129 10.1364/JOSAA.27.000852 10.1109/TIP.2005.860325 10.1016/j.jmaa.2005.03.087 10.1109/TIP.2007.901820 10.1109/ACSSC.2009.5469973 10.1109/ICIP.2006.313051 10.1109/ICASSP.2008.4517722 10.1016/S0022-247X(02)00219-6 10.1109/TCSVT.2010.2087472 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TIP.2011.2173206 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 1499 |
| ExternalDocumentID | 22042163 10_1109_TIP_2011_2173206 6059504 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c384t-84b41f26fa2669154d2b32766ce77dc51b8dd8cf99ec4f1013a89ce1175b60f13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 396 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302181800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Wed Oct 01 11:55:36 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Sat Nov 29 03:20:47 EST 2025 Tue Nov 18 20:59:37 EST 2025 Tue Aug 26 16:57:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c384t-84b41f26fa2669154d2b32766ce77dc51b8dd8cf99ec4f1013a89ce1175b60f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22042163 |
| PQID | 940835835 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIP_2011_2173206 proquest_miscellaneous_940835835 crossref_primary_10_1109_TIP_2011_2173206 pubmed_primary_22042163 ieee_primary_6059504 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-April 2012-04-00 2012-Apr 20120401 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-April |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ponomarenko (ref43) 2008 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 brunet (ref21) 2010; 6111 li (ref47) 2010; 7744 lu (ref45) 1997 ref24 ref23 ref26 ref25 ref20 ref22 ref44 teo (ref11) 1994; 2 ponomarenko (ref42) 2009 sheikh (ref41) 2010 ref27 ref29 ref8 yianilos (ref34) 1991 ref7 (ref46) 2005 ref4 ref3 ref6 ref5 ref40 larson (ref9) 2010; 19 wang (ref28) 2004; 5292 |
| References_xml | – ident: ref16 doi: 10.1109/ICASSP.2011.5946605 – ident: ref37 doi: 10.2307/2031742 – ident: ref27 doi: 10.1109/ICASSP.2011.5946533 – ident: ref6 doi: 10.1109/TIP.2010.2092435 – ident: ref20 doi: 10.1007/s10043-009-0119-z – ident: ref36 doi: 10.2307/2688275 – ident: ref40 doi: 10.1109/ICIP.2008.4711973 – ident: ref4 doi: 10.1109/TIP.2003.819861 – ident: ref23 doi: 10.1109/TIP.2008.2001400 – ident: ref38 doi: 10.1007/978-3-642-21596-4_27 – ident: ref31 doi: 10.2140/pjm.1982.101.389 – ident: ref22 doi: 10.1109/ICIP.2007.4379107 – year: 2010 ident: ref41 publication-title: Image and Video Quality Assessment Research at LIVE – year: 1997 ident: ref45 publication-title: Fractal Imaging – ident: ref30 doi: 10.1155/2011/857959 – ident: ref3 doi: 10.1109/97.995823 – ident: ref29 doi: 10.1167/8.12.8 – year: 2005 ident: ref46 publication-title: Handbook of Generalized Convexity and Generalized Monotonicity – volume: 6111 start-page: 11 year: 2010 ident: ref21 article-title: Structural similarity-based approximation of signals and images using orthogonal bases publication-title: Proc Int Conf Image Anal Recognit doi: 10.1007/978-3-642-13772-3_2 – ident: ref24 doi: 10.1109/DCC.2009.15 – ident: ref12 doi: 10.1016/S0031-3203(02)00325-4 – ident: ref44 doi: 10.1017/CBO9780511804441 – ident: ref2 doi: 10.2200/S00010ED1V01Y200508IVM003 – ident: ref10 doi: 10.1109/TIP.2011.2109730 – ident: ref5 doi: 10.1109/ACSSC.2003.1292216 – ident: ref33 doi: 10.1016/j.jmaa.2004.07.034 – year: 1991 ident: ref34 publication-title: Normalized Forms for Two Common Metrics – ident: ref1 doi: 10.1109/MSP.2008.930649 – year: 2008 ident: ref43 publication-title: Tampere image database 2008 TID2008 – ident: ref25 doi: 10.1109/ICICISYS.2009.5357689 – ident: ref35 doi: 10.1109/TIT.2004.838101 – volume: 2 start-page: 982 year: 1994 ident: ref11 article-title: Perceptual image distortion publication-title: Proc IEEE Int Conf Image Process doi: 10.1109/ICIP.1994.413502 – ident: ref19 doi: 10.1109/TIP.2008.921328 – ident: ref7 doi: 10.1109/TIP.2005.859378 – volume: 7744 start-page: 1j year: 2010 ident: ref47 article-title: Collective sensing: A fixed-point approach in the metric space publication-title: Proc SPIE Visual Comm Image Process – volume: 5292 start-page: 99 year: 2004 ident: ref28 article-title: Stimulus synthesis for efficient evaluation and refinement of perceptual image quality metrics publication-title: Proc Human Vis Electron Imag IX-SPIE doi: 10.1117/12.537129 – ident: ref14 doi: 10.1364/JOSAA.27.000852 – volume: 19 start-page: 11006-1 year: 2010 ident: ref9 article-title: Most apparent distortion: Full reference image quality assessment and the role of strategy publication-title: J Electron Imag – start-page: 1 year: 2009 ident: ref42 article-title: Metrics performance comparison for color image database publication-title: Proc 4th Int Workshop Video Process Quality Metrics Consumer Electron – ident: ref13 doi: 10.1109/TIP.2005.860325 – ident: ref39 doi: 10.1016/j.jmaa.2005.03.087 – ident: ref8 doi: 10.1109/TIP.2007.901820 – ident: ref18 doi: 10.1109/ACSSC.2009.5469973 – ident: ref15 doi: 10.1109/ICIP.2006.313051 – ident: ref17 doi: 10.1109/ICASSP.2008.4517722 – ident: ref32 doi: 10.1016/S0022-247X(02)00219-6 – ident: ref26 doi: 10.1109/TCSVT.2010.2087472 |
| SSID | ssj0014516 |
| Score | 2.556605 |
| Snippet | Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1488 |
| SubjectTerms | Algorithms Artificial Intelligence Cone metrics Correlation Distortion measurement Extraterrestrial measurements Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Indexes normalized metrics Optimization Pattern Recognition, Automated - methods perceptually optimized algorithms and methods quality metrics and assessment tools quasi-convexity and convexity Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted structural similarity (SSIM) index Subtraction Technique |
| Title | On the Mathematical Properties of the Structural Similarity Index |
| URI | https://ieeexplore.ieee.org/document/6059504 https://www.ncbi.nlm.nih.gov/pubmed/22042163 https://www.proquest.com/docview/940835835 |
| Volume | 21 |
| WOSCitedRecordID | wos000302181800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAHp_OrfpGDF8G6NmmT5ijicAd14ITdSpMmMNBONvXv9yXtioIKQg-FJml4H-SXvLzfAzizNFKp4WVIXXpuYjULldAitJJLzTRiYlYXmxD399lkIkcrcNHmwhhj_OUzc-lefSy_nOl3d1TWR-gtU0f-uSoEr3O12oiBKzjrI5upCAXC_mVIMpL98XBUc3Ui_MYZuapFlKKxxpx9W418eZXfkaZfcQbd_811CzYbZEmualPYhhVT9aDboEzS-PCiBxtfKAh34OqhIogByV1L34pjjNwJ_dxRrZKZ9Z8fPc2so-ggj9OXKW6HEb2ToaNa3IWnwc34-jZsyiqEmmXJW5glKokt5bbAxVkihCqpYlRwro0QpU5jlZVlpq2URicWXZYVmdTGcXoqHtmY7UGnmlXmAAiTilpqY2G5TXAnp5SKYluwSEdJoVMaQH8p3lw3nOOu9MVz7vcekcxRN7nTTd7oJoDztsdrzbfxR9sdJ_e2XSPyAMhSgzn6iguAFJWZvS9ymTjAiU8A-7Vm275Lgzj8ecwjWMc_0_rKzjF0UOjmBNb0x9t0MT9Fe5xkp94ePwELNtgV |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5CNlj70K7t2mZrVz3sZTAvtmRb1mMoLQ1LskAy6JuxZAkCrVPyo39_72THbLANCn4QWBLi7oQ-6aTvA_jieKgTm5YBp-e5sTMi0NLIwKlUGWEQE4tabEJOJtn9vZp24Fv7FsZa6y-f2e9U9Ln8cmm2dFTWR-itEiL_fEPKWUn9WqvNGZDkrM9tJjKQCPx3SclQ9efDac3WiQAcx0S6RZxjuEap-GM98gIr_8aafs25PXzdaN_DQYMt2aAOhiPo2OoYDhucyZpZvD6G_d9ICE9g8LNiiALZuCVwxT6mdEa_IrJVtnT-98wTzRJJB5stHhe4IUb8zoZEtvgBft3ezK_vgkZYITAiizdBFus4cjx1BS7PCkFUybXgMk2NlbI0SaSzssyMU8qa2OGkFUWmjCVWT52GLhKn0K2WlT0HJpTmjrtIutTFuJfTWoeRK0RowrgwCe9Bf2fe3DSs4yR-8ZD73UeocvRNTr7JG9_04Gvb4qlm3PhP3ROye1uvMXkP2M6DOc4WSoEUlV1u17mKCXLi14Oz2rNt211AfPx7n1fw7m4-HuWj4eTHJ9jDUfD6As8FdNEB9hLemufNYr367KPyBWVy2ng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+mathematical+properties+of+the+structural+similarity+index&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Brunet%2C+Dominique&rft.au=Vrscay%2C+Edward+R&rft.au=Wang%2C+Zhou&rft.date=2012-04-01&rft.eissn=1941-0042&rft.volume=21&rft.issue=4&rft.spage=1488&rft_id=info:doi/10.1109%2FTIP.2011.2173206&rft_id=info%3Apmid%2F22042163&rft.externalDocID=22042163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |