A new solution to the hyperbolic tangent implementation in hardware: polynomial modeling of the fractional exponential part

The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 23; H. 2; S. 363 - 369
Hauptverfasser: Nascimento, Ivo, Jardim, Ricardo, Morgado-Dias, Fernando
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.08.2013
Springer
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most difficult part of an artificial neural network to implement in hardware is the nonlinear activation function. For most implementations, the function used is the hyperbolic tangent. This function has received much attention in relation to hardware implementation. Nevertheless, there is no consensus regarding the best solution. In this paper, we propose a new approach by implementing the hyperbolic tangent in hardware with a polynomial modeling of the fractional exponential part. The results in the paper then demonstrate, through the use of an example, that this solution is faster than the CORDIC algorithm, but slower than the piecewise linear solution with the same error. The advantage over the piecewise linear approach is that it uses less memory.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-012-0919-0