RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance

We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal restin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of experimental medicine Ročník 211; číslo 5; s. 943
Hlavní autoři: Xiao, Yanping, Yu, Sanhong, Zhu, Baogong, Bedoret, Denis, Bu, Xia, Francisco, Loise M, Hua, Ping, Duke-Cohan, Jonathan S, Umetsu, Dale T, Sharpe, Arlene H, DeKruyff, Rosemarie H, Freeman, Gordon J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 05.05.2014
Témata:
ISSN:1540-9538, 1540-9538
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We report that programmed death ligand 2 (PD-L2), a known ligand of PD-1, also binds to repulsive guidance molecule b (RGMb), which was originally identified in the nervous system as a co-receptor for bone morphogenetic proteins (BMPs). PD-L2 and BMP-2/4 bind to distinct sites on RGMb. Normal resting lung interstitial macrophages and alveolar epithelial cells express high levels of RGMb mRNA, whereas lung dendritic cells express PD-L2. Blockade of the RGMb-PD-L2 interaction markedly impaired the development of respiratory tolerance by interfering with the initial T cell expansion required for respiratory tolerance. Experiments with PD-L2-deficient mice showed that PD-L2 expression on non-T cells was critical for respiratory tolerance, but expression on T cells was not required. Because PD-L2 binds to both PD-1, which inhibits antitumor immunity, and to RGMb, which regulates respiratory immunity, targeting the PD-L2 pathway has therapeutic potential for asthma, cancer, and other immune-mediated disorders. Understanding this pathway may provide insights into how to optimally modulate the PD-1 pathway in cancer immunotherapy while minimizing adverse events.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1540-9538
1540-9538
DOI:10.1084/jem.20130790