Gaussian Laws for the Main Parameters of the Euclid Algorithms

We provide sharp estimates for the probabilistic behaviour of the main parameters of the Euclid Algorithms, both on polynomials and on integer numbers. We study in particular the distribution of the bit-complexity which involves two main parameters: digit-costs and length of remainders. We first sho...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 50; no. 4; pp. 497 - 554
Main Authors: Lhote, Loïck, Vallée, Brigitte
Format: Journal Article Conference Proceeding
Language:English
Published: New York Springer-Verlag 01.04.2008
Springer
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We provide sharp estimates for the probabilistic behaviour of the main parameters of the Euclid Algorithms, both on polynomials and on integer numbers. We study in particular the distribution of the bit-complexity which involves two main parameters: digit-costs and length of remainders. We first show here that an asymptotic Gaussian law holds for the length of remainders at a fraction of the execution, which exhibits a deep regularity phenomenon. Then, we study in each framework—polynomials ( P ) and integer numbers ( I )—two gcd algorithms, the standard one ( S ) which only computes the gcd, and the extended one ( E ) which also computes the Bezout pair, and is widely used for computing modular inverses. The extended algorithm is more regular than the standard one, and this explains that our results are more precise for the Extended algorithm: we exhibit an asymptotic Gaussian law for the bit-complexity of the extended algorithm, in both cases ( P ) and ( I ). We also prove that an asymptotic Gaussian law for the bit-complexity of the standard gcd in case ( P ), but we do not succeed obtaining a similar result in case ( I ). The integer study is more involved than the polynomial study, as it is usually the case. In the polynomial case, we deal with the central tools of the distributional analysis of algorithms, namely bivariate generating functions. In the integer case, we are led to dynamical methods, which heavily use the dynamical system underlying the number Euclidean algorithm, and its transfer operator. Baladi and Vallée (J. Number Theory 110(2):331–386, 2005 ) have recently designed a general framework for “distributional dynamical analysis”, where they have exhibited asymptotic Gaussian laws for a large family of parameters. However, this family does not contain neither the bit-complexity cost nor the size of remainders, and we have to extend their methods for obtaining our results. Even if these dynamical methods are not necessary in case ( P ), we explain how the polynomial dynamical system can be also used for proving our results. This provides a common framework for both analyses, which well explains the similarities and the differences between the two cases ( P ) and ( I ), for the algorithms themselves, and also for their analysis. An extended abstract of this paper can be found in Lhote and Vallée (Proceedings of LATIN’06, Lecture Notes in Computer Science, vol. 3887, pp. 689–702, 2006 ).
AbstractList We provide sharp estimates for the probabilistic behaviour of the main parameters of the Euclid Algorithms, both on polynomials and on integer numbers. We study in particular the distribution of the bit-complexity which involves two main parameters: digit-costs and length of remainders. We first show here that an asymptotic Gaussian law holds for the length of remainders at a fraction of the execution, which exhibits a deep regularity phenomenon. Then, we study in each framework—polynomials ( P ) and integer numbers ( I )—two gcd algorithms, the standard one ( S ) which only computes the gcd, and the extended one ( E ) which also computes the Bezout pair, and is widely used for computing modular inverses. The extended algorithm is more regular than the standard one, and this explains that our results are more precise for the Extended algorithm: we exhibit an asymptotic Gaussian law for the bit-complexity of the extended algorithm, in both cases ( P ) and ( I ). We also prove that an asymptotic Gaussian law for the bit-complexity of the standard gcd in case ( P ), but we do not succeed obtaining a similar result in case ( I ). The integer study is more involved than the polynomial study, as it is usually the case. In the polynomial case, we deal with the central tools of the distributional analysis of algorithms, namely bivariate generating functions. In the integer case, we are led to dynamical methods, which heavily use the dynamical system underlying the number Euclidean algorithm, and its transfer operator. Baladi and Vallée (J. Number Theory 110(2):331–386, 2005 ) have recently designed a general framework for “distributional dynamical analysis”, where they have exhibited asymptotic Gaussian laws for a large family of parameters. However, this family does not contain neither the bit-complexity cost nor the size of remainders, and we have to extend their methods for obtaining our results. Even if these dynamical methods are not necessary in case ( P ), we explain how the polynomial dynamical system can be also used for proving our results. This provides a common framework for both analyses, which well explains the similarities and the differences between the two cases ( P ) and ( I ), for the algorithms themselves, and also for their analysis. An extended abstract of this paper can be found in Lhote and Vallée (Proceedings of LATIN’06, Lecture Notes in Computer Science, vol. 3887, pp. 689–702, 2006 ).
Author Lhote, Loïck
Vallée, Brigitte
Author_xml – sequence: 1
  givenname: Loïck
  surname: Lhote
  fullname: Lhote, Loïck
  organization: Departement d’Informatique, GREYC, CNRS and University of Caen
– sequence: 2
  givenname: Brigitte
  surname: Vallée
  fullname: Vallée, Brigitte
  email: brigitte.vallee@info.unicaen.fr
  organization: Departement d’Informatique, GREYC, CNRS and University of Caen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20365169$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJErhB7BlYQycP2LHC1JVlYJUBAPM0dWxW1epU9mpEP-elCAGhk53unufO-m5JKPQBkvIDYU7CqDuE4AoeN63uQbQuTwjYyo4y6EQdETGQFWZC0nVBblMaQtAmdJyTB4WeEjJY8iW-Jky18as29jsBX3I3jDiznY2pqx1P-P5wTS-zqbNuo2-2-zSFTl32CR7_Vsn5ONx_j57ypevi-fZdJkbXoouZ05pAaWlK8O4MGZVa8ZdwUoOFhXjtTC1thaRCpCy32iURhldOOpqaVZ8Qm6Hu3tMBhsXMRifqn30O4xfFQMuCyp1n6NDzsQ2pWjdX4RCdRRVDaKqY3sUVcmeUf8Y4zvsfBu6iL45SbKBTP2XsLax2raHGHoRJ6BvjXh96g
CitedBy_id crossref_primary_10_1016_j_aim_2015_12_008
crossref_primary_10_1017_S0963548321000274
crossref_primary_10_1016_j_aam_2013_11_001
crossref_primary_10_1016_j_ffa_2021_101849
crossref_primary_10_1007_s00607_011_0181_9
crossref_primary_10_1016_j_jsc_2015_08_007
crossref_primary_10_1016_j_jsc_2008_04_018
crossref_primary_10_1016_j_jsc_2017_07_004
Cites_doi 10.3934/dcds.2006.15.281
10.1016/j.jnt.2004.08.008
10.1016/S0304-3975(02)00652-7
10.1006/jnth.1994.1088
10.2307/2302607
10.1112/S002557930001528X
10.1090/S0002-9939-96-03394-1
10.1215/S0012-7094-70-03756-7
10.2307/121012
10.1016/0022-314X(70)90044-2
10.1007/978-1-4615-4819-5_7
10.1007/11682462_63
10.1080/00029890.1938.11990797
10.1007/BF00289520
10.4064/aa-81-2-101-144
10.5802/jtnb.296
10.1007/3-540-45022-X_32
10.1017/S0963548304006261
ContentType Journal Article
Conference Proceeding
Copyright Springer Science+Business Media, LLC 2007
2008 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media, LLC 2007
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00453-007-9009-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1432-0541
EndPage 554
ExternalDocumentID 20365169
10_1007_s00453_007_9009_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
ID FETCH-LOGICAL-c384t-2f79408e1bc234ccbd923f52830ea723d4cd9eeaa140663f59a6c7c95f1fd6cb3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000253895900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Mon Jul 21 09:15:07 EDT 2025
Tue Nov 18 21:16:18 EST 2025
Sat Nov 29 03:45:23 EST 2025
Fri Feb 21 02:40:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dynamical analysis of algorithms
Tauberian theorems
Average-case analysis
Transfer operator
Perron’s formula
Analysis of algorithms
Dynamical systems
Euclid’s algorithms
Distributional analysis
Asymptotic Gaussian laws
Probabilistic approach
Generating function
Similarity
Euclidean theory
Distributional analysis· Dynamical systems
Gaussian distribution
Perron's formula .Dynamical analysis of algorithms
Polynomial method
Dynamical system
Modeling
Euclid's algorithms· Analysis of algorithms· Average-case analysis
Bézout idendity
Greatest commun divisor
Asymptotic approximation
Regularity
Algorithm analysis
Number theory
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MeetingName Latin American Theoretical Informatics Conference (LATIN)
MergedId FETCHMERGED-LOGICAL-c384t-2f79408e1bc234ccbd923f52830ea723d4cd9eeaa140663f59a6c7c95f1fd6cb3
PageCount 58
ParticipantIDs pascalfrancis_primary_20365169
crossref_primary_10_1007_s00453_007_9009_6
crossref_citationtrail_10_1007_s00453_007_9009_6
springer_journals_10_1007_s00453_007_9009_6
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2008
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References Vallée (CR29) 2006; 15
Dixon (CR8) 1970; 2
CR17
Philipp (CR22) 1970; 37
Vallée (CR27) 2000; 12
CR12
CR11
Heilbronn, Turan (CR15) 1969
Friesen, Hensley (CR14) 1996; 124
Akhavi, Vallée (CR1) 2000
Vallée (CR26) 1997; 81
Delange (CR7) 1954; 71
Ruelle (CR23) 1978
CR4
CR6
CR5
Knopfmacher, Knopfmacher (CR18) 1988; 35
Finch (CR13) 2003
CR24
Baladi, Vallée (CR2) 2005; 110
Lehmer (CR19) 1938; 45
Dolgopyat (CR9) 1998; 147
Hensley (CR16) 1994; 49
CR20
Lhote, Vallée (CR21) 2006
Vallée (CR28) 2003; 297
Berthé, Nakada (CR3) 2000; 18
Von Zur Gathen, Gerhard (CR30) 1999
Tenenbaum (CR25) 1990
Ellison, Ellison (CR10) 1985
9009_CR4
9009_CR5
D. Dolgopyat (9009_CR9) 1998; 147
D. Ruelle (9009_CR23) 1978
B. Vallée (9009_CR27) 2000; 12
J. Knopfmacher (9009_CR18) 1988; 35
D.H. Lehmer (9009_CR19) 1938; 45
9009_CR6
9009_CR24
G. Tenenbaum (9009_CR25) 1990
S.R. Finch (9009_CR13) 2003
9009_CR20
H. Delange (9009_CR7) 1954; 71
V. Berthé (9009_CR3) 2000; 18
J. Zur Gathen Von (9009_CR30) 1999
V. Baladi (9009_CR2) 2005; 110
D. Hensley (9009_CR16) 1994; 49
C. Friesen (9009_CR14) 1996; 124
9009_CR17
W. Ellison (9009_CR10) 1985
9009_CR11
A. Akhavi (9009_CR1) 2000
9009_CR12
H. Heilbronn (9009_CR15) 1969
B. Vallée (9009_CR26) 1997; 81
L. Lhote (9009_CR21) 2006
B. Vallée (9009_CR28) 2003; 297
W. Philipp (9009_CR22) 1970; 37
B. Vallée (9009_CR29) 2006; 15
J.D. Dixon (9009_CR8) 1970; 2
References_xml – start-page: 373
  year: 2000
  end-page: 387
  ident: CR1
  article-title: Average bit-complexity of Euclidean algorithms
  publication-title: Proceedings of ICALP’2000
– ident: CR4
– volume: 15
  start-page: 281
  issue: 1
  year: 2006
  end-page: 352
  ident: CR29
  article-title: Euclidean dynamics
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.15.281
– ident: CR12
– volume: 110
  start-page: 331
  issue: 2
  year: 2005
  end-page: 386
  ident: CR2
  article-title: Euclidean algorithms are Gaussian
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2004.08.008
– ident: CR6
– year: 1985
  ident: CR10
  publication-title: Prime Numbers
– year: 1990
  ident: CR25
  publication-title: Introduction à la Théorie Analytique des Nombres
– volume: 297
  start-page: 447
  issue: 1-3
  year: 2003
  end-page: 486
  ident: CR28
  article-title: Dynamical analysis of a class of Euclidean algorithms
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00652-7
– volume: 71
  start-page: 213
  year: 1954
  end-page: 242
  ident: CR7
  article-title: Généralisation du théorème d’ikehara
  publication-title: Ann. Sc. ENS
– start-page: 689
  year: 2006
  end-page: 702
  ident: CR21
  article-title: Sharp estimates for the main parameters of the Euclid algorithm
  publication-title: Proceedings of LATIN’06
– volume: 49
  start-page: 142
  issue: 2
  year: 1994
  end-page: 182
  ident: CR16
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1994.1088
– year: 1978
  ident: CR23
  publication-title: Thermodynamic Formalism
– volume: 45
  start-page: 227
  year: 1938
  end-page: 233
  ident: CR19
  article-title: Euclid’s algorithm for large numbers
  publication-title: Am. Math. Mon.
  doi: 10.2307/2302607
– ident: CR17
– volume: 18
  start-page: 257
  year: 2000
  end-page: 284
  ident: CR3
  article-title: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties
  publication-title: Expo. Math.
– volume: 35
  start-page: 297
  year: 1988
  end-page: 304
  ident: CR18
  article-title: The exact length of the Euclidean algorithm in [ ]
  publication-title: Mathematika
  doi: 10.1112/S002557930001528X
– ident: CR11
– start-page: 87
  year: 1969
  end-page: 96
  ident: CR15
  article-title: On the average length of a class of continued fractions
  publication-title: Number Theory and Analysis
– volume: 81
  start-page: 101
  issue: 2
  year: 1997
  end-page: 144
  ident: CR26
  article-title: Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes de Gauss et d’Euclide
  publication-title: Acta Arith.
– volume: 124
  start-page: 2661
  issue: 9
  year: 1996
  end-page: 2673
  ident: CR14
  article-title: The statistics of continued fractions for polynomials over a finite field
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-96-03394-1
– year: 2003
  ident: CR13
  publication-title: Mathematical Constants
– ident: CR5
– volume: 37
  start-page: 447
  year: 1970
  end-page: 488
  ident: CR22
  article-title: Some metrical theorems in number theory II
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-70-03756-7
– volume: 147
  start-page: 357
  year: 1998
  end-page: 390
  ident: CR9
  article-title: On decay of correlations in Anosov flows
  publication-title: Ann. Math.
  doi: 10.2307/121012
– volume: 12
  start-page: 531
  year: 2000
  end-page: 570
  ident: CR27
  article-title: Digits and continuants in Euclidean algorithms. Ergodic versus Tauberian theorems
  publication-title: J. Théor. Nr. Bordx
– ident: CR24
– year: 1999
  ident: CR30
  publication-title: Modern Computer Algebra
– volume: 2
  start-page: 414
  year: 1970
  end-page: 422
  ident: CR8
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(70)90044-2
– ident: CR20
– start-page: 87
  volume-title: Number Theory and Analysis
  year: 1969
  ident: 9009_CR15
  doi: 10.1007/978-1-4615-4819-5_7
– ident: 9009_CR20
– volume: 297
  start-page: 447
  issue: 1-3
  year: 2003
  ident: 9009_CR28
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00652-7
– volume: 147
  start-page: 357
  year: 1998
  ident: 9009_CR9
  publication-title: Ann. Math.
  doi: 10.2307/121012
– volume: 110
  start-page: 331
  issue: 2
  year: 2005
  ident: 9009_CR2
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2004.08.008
– start-page: 689
  volume-title: Proceedings of LATIN’06
  year: 2006
  ident: 9009_CR21
  doi: 10.1007/11682462_63
– ident: 9009_CR5
– volume-title: Mathematical Constants
  year: 2003
  ident: 9009_CR13
– ident: 9009_CR11
– volume: 45
  start-page: 227
  year: 1938
  ident: 9009_CR19
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1938.11990797
– ident: 9009_CR24
  doi: 10.1007/BF00289520
– volume: 2
  start-page: 414
  year: 1970
  ident: 9009_CR8
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(70)90044-2
– ident: 9009_CR17
– volume: 15
  start-page: 281
  issue: 1
  year: 2006
  ident: 9009_CR29
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.15.281
– volume-title: Introduction à la Théorie Analytique des Nombres
  year: 1990
  ident: 9009_CR25
– volume-title: Prime Numbers
  year: 1985
  ident: 9009_CR10
– volume: 49
  start-page: 142
  issue: 2
  year: 1994
  ident: 9009_CR16
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1994.1088
– volume: 35
  start-page: 297
  year: 1988
  ident: 9009_CR18
  publication-title: Mathematika
  doi: 10.1112/S002557930001528X
– volume: 81
  start-page: 101
  issue: 2
  year: 1997
  ident: 9009_CR26
  publication-title: Acta Arith.
  doi: 10.4064/aa-81-2-101-144
– volume: 18
  start-page: 257
  year: 2000
  ident: 9009_CR3
  publication-title: Expo. Math.
– volume: 12
  start-page: 531
  year: 2000
  ident: 9009_CR27
  publication-title: J. Théor. Nr. Bordx
  doi: 10.5802/jtnb.296
– volume: 124
  start-page: 2661
  issue: 9
  year: 1996
  ident: 9009_CR14
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-96-03394-1
– volume-title: Modern Computer Algebra
  year: 1999
  ident: 9009_CR30
– start-page: 373
  volume-title: Proceedings of ICALP’2000
  year: 2000
  ident: 9009_CR1
  doi: 10.1007/3-540-45022-X_32
– volume: 37
  start-page: 447
  year: 1970
  ident: 9009_CR22
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-70-03756-7
– ident: 9009_CR4
– ident: 9009_CR12
– volume: 71
  start-page: 213
  year: 1954
  ident: 9009_CR7
  publication-title: Ann. Sc. ENS
– volume-title: Thermodynamic Formalism
  year: 1978
  ident: 9009_CR23
– ident: 9009_CR6
  doi: 10.1017/S0963548304006261
SSID ssj0012796
Score 1.8808347
Snippet We provide sharp estimates for the probabilistic behaviour of the main parameters of the Euclid Algorithms, both on polynomials and on integer numbers. We...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computer Science
Computer science; control theory; systems
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Exact sciences and technology
Mathematics of Computing
Theoretical computing
Theory of Computation
Title Gaussian Laws for the Main Parameters of the Euclid Algorithms
URI https://link.springer.com/article/10.1007/s00453-007-9009-6
Volume 50
WOSCitedRecordID wos000253895900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9EEQ5xXnZeTBJyWwtV2TvghDNn2YY3gZeyu5amF2Y-3075v0BsML6FspSSgnOT1f8p2cD-DCVbwjfUWxiWUEe4q0MTdxA-tACxYw5vGs2ud4QIZDOpkEo-Ied1Jmu5eUZPanri67WfThYnu0FtgTfX8dNky0o1av4eFxXFEHDslEuazsPPZMfC6pzO-GWAlG23OWGLvoXNDiCzOaBZx-_V-fugs7Bb5E3XxB7MGaivehXmo3oMKVD-D6li0Te4ESDdhHggx0RQYKonsWxWjEbMaWLbuJZjp73VuKaSRRd_oyW0Tp61tyCM_93tPNHS60FLBwqZdiRxvHa1HV5sJxPSG4NMhO28ouLcWI40pPyEApxsyGy4AQ3QmYL4gIOrqtpS-4ewS1eBarY0DK4HGHOL6QVHqSEcoN9G0JqgO7tyK8Aa3SqKEoCo1bvYtpWJVIzuwT2kdrn9BvwGXVZZ5X2fitcXNlpqoellO1tF8DrsppCQuPTH4e7uRPrU9hK88Ysbk7Z1BLF0t1DpviPY2SRTNbiZ-br9a3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFBTEecV5mXnwSQlsbde0L8KQTcVuDJ1jbyXNRQuzG2unf9-kNxheQN9KSUI5yen5ku_kOwAXpgha3BYOVrGMYEuQJg5U3MDSlYy6lFpBqvY58ki_74zH7iC_xx0X2e4FJZn-qcvLbhp9mFgfrbn6RN9ehTVLBSwtmP_4NCqpA4OkRbl02XlsqfhcUJnfDbEUjLZmNFZ2kVlBiy_MaBpwutV_feoObOf4ErWzBbELKyLag2pRuwHlrrwP17d0EesLlMijHzFS0BUpKIh6NIzQgOqMLS27iaYyfd1ZsEnIUXvyMp2HyetbfADP3c7w5g7ntRQwMx0rwYZUjtdwRDNghmkxFnCF7KRWdmkISgyTW4y7QlCqNlwKhMiWS21GmNuSTcltFpiHUImmkTgCJBQeN4hhM-5wi1PiBAr6NpgjXb23IkENGoVRfZYLjet6FxO_lEhO7ePrR20f367BZdlllqls_Na4vjRTZQ_NqWrarwZXxbT4uUfGPw93_KfW57BxN-x5vnfffziBzSx7ROfxnEIlmS_EGayz9ySM5_V0VX4CtV7Zmw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFBHEecV5zYNPStjWdk37Iog6FecYeGFvJc1FB7Mba6d_35zeYHgB8a2EJJSThPMl55zvAzi2VdiSrvKo8WWMOoo1aWj8BtW-Ftzn3AlTts_nDut2vX7f7-U6p3GR7V6EJLOaBmRpipL6WOp6WfiGSMSm-Mzm4-u-Ow8LDubR43X94bkMI1gsFehCCXrqGF9dhDW_m2LGMa2MeWxspDNxiy9R0tT5tKv__u01WM1xJznPNso6zKloA6qFpgPJj_gmnF3zaYyFlaTDP2JiIC0xEJHc80FEehwzuZCOk4x02nw1FcOBJOfDl9FkkLy-xVvw1L56vLihucYCFbbnJNTS5kA2PNUMhWU7QoTSID6NjC8NxZllS0dIXynOzUXMgBPd8rkrmPBbuqmlK0J7GyrRKFI7QJTB6RazXCE96UjOvNBA4obwtI93LhbWoFEYOBA5ATnqYAyDkjo5tU-An2ifwK3BSTlknLFv_Nb5cGbVyhEYa8VwYA1OiyUK8pMa_zzd7p96H8FS77IddG67d3uwnCWVYHrPPlSSyVQdwKJ4Twbx5DDdoJ-IvuJ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Algorithmica&rft.atitle=Gaussian+Laws+for+the+Main+Parameters+of+the+Euclid+Algorithms&rft.au=LHOTE%2C+Lo%C3%AFck&rft.au=VALLEE%2C+Brigitte&rft.date=2008-04-01&rft.pub=Springer&rft.issn=0178-4617&rft.volume=50&rft.issue=4&rft.spage=497&rft.epage=554&rft_id=info:doi/10.1007%2Fs00453-007-9009-6&rft.externalDBID=n%2Fa&rft.externalDocID=20365169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon