A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification
This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong sear...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 22; číslo 7-8; s. 1609 - 1626 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer-Verlag
01.06.2013
Springer |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong search capability while maintaining genetic diversity using multiple GAs but also has a cellular-like structure and is a straight-forward algorithm suitable for hardware implementation. The c-cGA hardware and an adaptive digital filter structure also perform an adaptive feature selection in real time. The c-cGA is applied to a block-based neural network (BbNN) for online learning in the hardware. Using an adaptive hardware approach based on the c-cGA, an adaptive hardware system for classifying ECG signals is feasible. The proposed adaptive hardware can be implemented in a field programmable gate array (FPGA) for an adaptive embedded system applied to personalised ECG signal classifications for long-term patient monitoring. |
|---|---|
| ISSN: | 0941-0643 1433-3058 |
| DOI: | 10.1007/s00521-012-0963-9 |