A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification

This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong sear...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 22; no. 7-8; pp. 1609 - 1626
Main Authors: Jewajinda, Yutana, Chongstitvatana, Prabhas
Format: Journal Article
Language:English
Published: London Springer-Verlag 01.06.2013
Springer
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong search capability while maintaining genetic diversity using multiple GAs but also has a cellular-like structure and is a straight-forward algorithm suitable for hardware implementation. The c-cGA hardware and an adaptive digital filter structure also perform an adaptive feature selection in real time. The c-cGA is applied to a block-based neural network (BbNN) for online learning in the hardware. Using an adaptive hardware approach based on the c-cGA, an adaptive hardware system for classifying ECG signals is feasible. The proposed adaptive hardware can be implemented in a field programmable gate array (FPGA) for an adaptive embedded system applied to personalised ECG signal classifications for long-term patient monitoring.
AbstractList This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An adaptive hardware based on the c-cGA is proposed to automate real-time classification of ECG signals. The c-cGA not only provides a strong search capability while maintaining genetic diversity using multiple GAs but also has a cellular-like structure and is a straight-forward algorithm suitable for hardware implementation. The c-cGA hardware and an adaptive digital filter structure also perform an adaptive feature selection in real time. The c-cGA is applied to a block-based neural network (BbNN) for online learning in the hardware. Using an adaptive hardware approach based on the c-cGA, an adaptive hardware system for classifying ECG signals is feasible. The proposed adaptive hardware can be implemented in a field programmable gate array (FPGA) for an adaptive embedded system applied to personalised ECG signal classifications for long-term patient monitoring.
Author Jewajinda, Yutana
Chongstitvatana, Prabhas
Author_xml – sequence: 1
  givenname: Yutana
  surname: Jewajinda
  fullname: Jewajinda, Yutana
  email: yutana.jewajinda@nectec.or.th
  organization: National Electronics and Computer Technology Center, Department of Computer Engineering, Chulalongkorn University
– sequence: 2
  givenname: Prabhas
  surname: Chongstitvatana
  fullname: Chongstitvatana, Prabhas
  organization: Department of Computer Engineering, Chulalongkorn University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27623614$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJErhB7B5YQz4K04yVlUpSJVYYLZO_khduUlkGxD_npRUDAydbnjf5073XKNZ13cWoTtKHigh1WMipGS0IJQVpJG8aC7QnArOC07KeobmpBFjKgW_Qtcp7QkhQtblHOklHiBCCDbg1nY2e40htH30eXfAro8YDAzZf1q8g2i-IFoMncE-JwzDELyG7PsO5x6vVxucfNtBwDpASt6dwht06SAke3uaC_T-tH5bPRfb183LarktNK9FLphhtTNc0EZrQw2HigopmKsqS2lZNpRYZsBJVhIhrJGsAslBECcd1GVt-ALdT3sHSBqCi9Bpn9QQ_QHit2KVZFyOUhaITj0d-5SidX8VStTRpppsqtGmOtpUzchU_xjt8-93OYIPZ0k2kWm80rU2qn3_EUdL6Qz0A0U1izI
CitedBy_id crossref_primary_10_1016_j_neucom_2014_05_033
crossref_primary_10_1007_s00521_013_1471_2
crossref_primary_10_1016_j_micpro_2023_104986
crossref_primary_10_1007_s00521_018_3925_z
crossref_primary_10_1016_j_neucom_2015_05_128
crossref_primary_10_1016_j_knosys_2014_05_004
crossref_primary_10_1007_s10916_019_1443_x
crossref_primary_10_1541_ieejeiss_136_1586
crossref_primary_10_1016_j_bspc_2018_03_003
crossref_primary_10_1155_2022_7564036
crossref_primary_10_1016_j_compeleceng_2016_02_004
crossref_primary_10_1007_s10489_017_1113_y
crossref_primary_10_1007_s00521_017_3051_3
crossref_primary_10_1016_j_jksuci_2022_01_002
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_2174_1573405619666230309103435
Cites_doi 10.1109/TEVC.2003.820662
10.1109/TNN.2007.900239
10.1109/4235.797971
10.1109/TBME.2006.883802
10.1109/AHS.2009.46
10.1109/TSP.2006.888883
10.1109/10.623058
10.1109/TIM.2003.816841
10.1109/AHS.2008.13
10.1109/WEAH.2009.4925661
10.1109/CEC.2008.4631161
10.1109/5.784219
10.1109/TITB.2008.923147
10.1007/0-387-31238-2
10.1109/72.914525
10.1161/01.CIR.101.23.e215
10.1109/51.932724
10.1109/TEVC.2002.800880
10.1007/978-3-540-85857-7_32
10.1007/978-3-540-85857-7_3
10.1109/CEC.2007.4424587
10.1007/978-3-540-30217-9_25
10.1109/TBME.2004.824138
10.1109/TEVC.2009.2025032
10.1109/CEC.2006.1688705
10.1080/09540090701725508
10.1007/BF02637023
10.1109/TNN.2007.891626
10.1109/TEVC.2003.814633
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2014 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00521-012-0963-9
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1433-3058
EndPage 1626
ExternalDocumentID 27623614
10_1007_s00521_012_0963_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
ID FETCH-LOGICAL-c384t-2d28fd3419ccd1d3a714642f77e1155910e2daf625044ed627a63a40f6fa858d3
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319769300036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Mon Jul 21 09:16:26 EDT 2025
Tue Nov 18 21:26:59 EST 2025
Sat Nov 29 02:58:56 EST 2025
Fri Feb 21 02:34:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords ECG signal classification
Parallel genetic algorithm
Adaptive hardware
Parallel algorithm
Neural computation
Adaptive algorithm
Adaptive system
Field programmable gate array
Long term variation
Adaptive filter
Neural network
Real time
Long term
Implementation
Learning
Digital filter
Genetic algorithm
Classification
Genetics
Monitoring
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-2d28fd3419ccd1d3a714642f77e1155910e2daf625044ed627a63a40f6fa858d3
PageCount 18
ParticipantIDs pascalfrancis_primary_27623614
crossref_primary_10_1007_s00521_012_0963_9
crossref_citationtrail_10_1007_s00521_012_0963_9
springer_journals_10_1007_s00521_012_0963_9
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References HuYPalreddySTompkinsWJA patient-adaptable ECG beat classifier using a mixture of experts approachIEEE Trans Biomed Eng199744989190010.1109/10.623058
Mark R, Wallen R (1987) Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithm. Association for the Advancement of Medical Instrumentation, Arlington
HamiltonPSTompkinsWJA real-time QRS detection algorithmIEEE Trans Biomed Eng198532230236
Salcedo-SanzSCruz-RoldFHeneghanCYaoXEvolutionary design of digital filters with application to sub-band coding and data transmissionIEEE Trans Signal Process200755411931203246498310.1109/TSP.2006.888883
GoldbergerALAmaralLANGlassLHausdorffJMIvanovPChMarkRGMietusJEMoodyGBPengCKStanleyHEPhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signalsCirculation200110123e215e22010.1161/01.CIR.101.23.e215
Merchant S et al (2006) FPGA implementation of evolvable block-based neural network. In: Proceeding of IEEE congress on evolutionary computation, pp 3129–3136
MelganiFBaziYClassification of electrocardiogram signals with support vector machines and particle swarm optimizationIEEE Trans Inf Technol Biomed200812566767710.1109/TITB.2008.923147
OsowskiSHoaiLTMarkiewiczTSupport vector machine based expert system for reliable heartbeat recognitionIEEE Trans Biomed Eng200451458258910.1109/TBME.2004.824138
GarrisonWGTyrellAMIntroduction to evolvable hardware: a practical guide for designing self-adaptive systems2007New JerseyWiley-IEEE Press
Glette K, Torresen J, Hovin M (2009) Intermediate level FPGA reconfiguration for an online EHW pattern recognition system. In: Proceeding of international conference on adaptive hardware and system, San Francisco, pp 19–26
ChazalPO’DwyerMReillyRBAutomatic classification of heartbeats using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200451411961206
Cantu-PazEEfficient and accurate parallel genetic algorithms2000BostonKluwer0963.68164
Shayani H, Bentley PJ, Tyrell AM (2008) Hardware Implementation of a bio-plausible neuron model for evolution and growth of spiking neural networks on FPGA. In: Proceeding of NASA/ESA conference on adaptive hardware and systems, pp 236–243
Xin J, Steve BF, Woods JV (2008) Efficient modeling of spiking neural network on a scalable chip multiprocessor. In: Proceeding of international joint conference neural network, pp 2812–2819
LagunaPJanRCaminalPRixHThakorNVAdaptive estimation of the QRS complex wave in the electrocardiographic signal (ECG) by the Hermite model: classification and ectopic beat detectionJ Med Biol Eng Comput199534586810.1007/BF02637023
Stefatos EF, Arlan T, Hamilton A (2008) Evolutionary techniques for precise and real-time implementation of low-power FIR filters. In: Proceeding of IEEE congress on evolutionary computation, Hong Kong, pp 2701–2708
Glette K, Torrensen J, Kaufmann P, Platzner M (2008) A comparison of evolvable hardware architecture for classification tasks. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware, pp 22–33
HimavathiSFeedforward neural network implementation in FPGA using layer multiplexing for effective resource utilizationIEEE Trans Neural Netw200718388088810.1109/TNN.2007.891626
Teerakittikul P, Tempesti G, Tyrrel AM (2009) The application of evolvable hardware to fault tolerant robot control. In: Proceeding of IEEE workshop on evolvable and adaptive hardware, Nashville, pp 1–8
FernandoPRKatkooriSKeymeulenDZebulumRStoicaACustomizable FPGA IP core implementation of a general-purpose genetic algorithm engineIEEE Trans Evol Comput201014113314910.1109/TEVC.2009.2025032
HarikGLoboFGoldbergDThe compact genetic algorithmIEEE Trans Evol Comput19993428730910.1109/4235.797971
WookCRamakrishnaRSElitism-based compact genetic algorithmIEEE Trans Evol Comput20037436738510.1109/TEVC.2003.814633
JiangWKongSGBlock-Based neural networks for personalized ECG signal classificationIEEE Trans Neural Netw20071861750176110.1109/TNN.2007.900239
HeJYaoXChenYA novel and practicable on-chip adaptive lossless image compression scheme using intrinsic evolvable hardwareConnect Sci200719428129510.1080/09540090701725508
LinhTHOsowskiSStodolskiMOn-line heart beat recognition using Hermite polynomials and neuro-fuzzy networkIEEE Trans Instrum Meas20035241224123110.1109/TIM.2003.816841
Mokhtar M, Halliday DM, Tyrell AM (2008) Hippocampus-inspired spiking neural network on FPGA, In: Proceeding of international conference on evolvable systems, Lect Notes Comput Sci, Springer 5216, pp 362–371
AlbaETomassiniMParallelism and evolutionary algorithmsIEEE Trans Evol Comput20026544346310.1109/TEVC.2002.800880
MoodyGBMarkRGThe impact of the MIT-BIH arrhythmia databaseIEEE Eng Med Biol2001203455010.1109/51.932724
TorensenTIncremental evolution of a signal classification hardware architecture for prosthetic hand controlInt J Knowl Intell Eng Syst200812187199
MoonSWKongSGBlock-based neural networksIEEE Trans Neural Netw20011230731710.1109/72.914525
HiguchiTIwataMLiuYYaoXIntroduction to evolvable hardware2006New YorkSpringer10.1007/0-387-31238-2
Ahn CW, Goldberg DE, Ramakrishna RS (2004) Multiple-deme parallel estimation of distribution algorithm. In: Proceeding of parallel processing and applied mathematics, Lect Notes Comput Sci 3019, pp 544–551
YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219
DelaOssa, L, Gmez JA, Puerta JM (2004) Migration of probability models instead of individuals: an alternative when applying the island model to edas. In: proceeding of international conference on parallel problem solving in nature (PPSN 2004), pp 242–252
Jaros J, Schwarz J (2007) Parallel BMDA with probability model migration. In: Proceeding of IEEE congress on evolutionary computation, pp 1059–1066
GallagherJCVigrahamSKramerGA family of compact genetic algorithms for intrinsic evolvable hardwareIEEE Trans Evol Comput20048211112610.1109/TEVC.2003.820662
ChazalPReillyRBA patient adapting heart beat classifier using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200653122535254310.1109/TBME.2006.883802
GB Moody (963_CR29) 2001; 20
PR Fernando (963_CR4) 2010; 14
963_CR9
963_CR8
AL Goldberger (963_CR30) 2001; 101
963_CR26
TH Linh (963_CR21) 2003; 52
JC Gallagher (963_CR3) 2004; 8
C Wook (963_CR17) 2003; 7
T Torensen (963_CR5) 2008; 12
WG Garrison (963_CR2) 2007
Y Hu (963_CR19) 1997; 44
F Melgani (963_CR28) 2008; 12
P Laguna (963_CR20) 1995; 34
SW Moon (963_CR32) 2001; 12
J He (963_CR6) 2007; 19
T Higuchi (963_CR1) 2006
S Himavathi (963_CR37) 2007; 18
S Salcedo-Sanz (963_CR10) 2007; 55
E Cantu-Paz (963_CR12) 2000
963_CR15
963_CR18
963_CR34
963_CR11
S Osowski (963_CR22) 2004; 51
X Yao (963_CR31) 1999; 87
963_CR33
E Alba (963_CR13) 2002; 6
963_CR14
W Jiang (963_CR25) 2007; 18
963_CR36
963_CR35
P Chazal (963_CR23) 2004; 51
PS Hamilton (963_CR27) 1985; 32
G Harik (963_CR16) 1999; 3
963_CR7
P Chazal (963_CR24) 2006; 53
References_xml – reference: Teerakittikul P, Tempesti G, Tyrrel AM (2009) The application of evolvable hardware to fault tolerant robot control. In: Proceeding of IEEE workshop on evolvable and adaptive hardware, Nashville, pp 1–8
– reference: Cantu-PazEEfficient and accurate parallel genetic algorithms2000BostonKluwer0963.68164
– reference: Merchant S et al (2006) FPGA implementation of evolvable block-based neural network. In: Proceeding of IEEE congress on evolutionary computation, pp 3129–3136
– reference: WookCRamakrishnaRSElitism-based compact genetic algorithmIEEE Trans Evol Comput20037436738510.1109/TEVC.2003.814633
– reference: ChazalPReillyRBA patient adapting heart beat classifier using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200653122535254310.1109/TBME.2006.883802
– reference: LagunaPJanRCaminalPRixHThakorNVAdaptive estimation of the QRS complex wave in the electrocardiographic signal (ECG) by the Hermite model: classification and ectopic beat detectionJ Med Biol Eng Comput199534586810.1007/BF02637023
– reference: LinhTHOsowskiSStodolskiMOn-line heart beat recognition using Hermite polynomials and neuro-fuzzy networkIEEE Trans Instrum Meas20035241224123110.1109/TIM.2003.816841
– reference: ChazalPO’DwyerMReillyRBAutomatic classification of heartbeats using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng200451411961206
– reference: MoodyGBMarkRGThe impact of the MIT-BIH arrhythmia databaseIEEE Eng Med Biol2001203455010.1109/51.932724
– reference: GallagherJCVigrahamSKramerGA family of compact genetic algorithms for intrinsic evolvable hardwareIEEE Trans Evol Comput20048211112610.1109/TEVC.2003.820662
– reference: HiguchiTIwataMLiuYYaoXIntroduction to evolvable hardware2006New YorkSpringer10.1007/0-387-31238-2
– reference: MoonSWKongSGBlock-based neural networksIEEE Trans Neural Netw20011230731710.1109/72.914525
– reference: Ahn CW, Goldberg DE, Ramakrishna RS (2004) Multiple-deme parallel estimation of distribution algorithm. In: Proceeding of parallel processing and applied mathematics, Lect Notes Comput Sci 3019, pp 544–551
– reference: MelganiFBaziYClassification of electrocardiogram signals with support vector machines and particle swarm optimizationIEEE Trans Inf Technol Biomed200812566767710.1109/TITB.2008.923147
– reference: HeJYaoXChenYA novel and practicable on-chip adaptive lossless image compression scheme using intrinsic evolvable hardwareConnect Sci200719428129510.1080/09540090701725508
– reference: GoldbergerALAmaralLANGlassLHausdorffJMIvanovPChMarkRGMietusJEMoodyGBPengCKStanleyHEPhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signalsCirculation200110123e215e22010.1161/01.CIR.101.23.e215
– reference: Mokhtar M, Halliday DM, Tyrell AM (2008) Hippocampus-inspired spiking neural network on FPGA, In: Proceeding of international conference on evolvable systems, Lect Notes Comput Sci, Springer 5216, pp 362–371
– reference: FernandoPRKatkooriSKeymeulenDZebulumRStoicaACustomizable FPGA IP core implementation of a general-purpose genetic algorithm engineIEEE Trans Evol Comput201014113314910.1109/TEVC.2009.2025032
– reference: GarrisonWGTyrellAMIntroduction to evolvable hardware: a practical guide for designing self-adaptive systems2007New JerseyWiley-IEEE Press
– reference: AlbaETomassiniMParallelism and evolutionary algorithmsIEEE Trans Evol Comput20026544346310.1109/TEVC.2002.800880
– reference: Salcedo-SanzSCruz-RoldFHeneghanCYaoXEvolutionary design of digital filters with application to sub-band coding and data transmissionIEEE Trans Signal Process200755411931203246498310.1109/TSP.2006.888883
– reference: Mark R, Wallen R (1987) Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithm. Association for the Advancement of Medical Instrumentation, Arlington
– reference: YaoXEvolving artificial neural networksProc IEEE19998791423144710.1109/5.784219
– reference: TorensenTIncremental evolution of a signal classification hardware architecture for prosthetic hand controlInt J Knowl Intell Eng Syst200812187199
– reference: DelaOssa, L, Gmez JA, Puerta JM (2004) Migration of probability models instead of individuals: an alternative when applying the island model to edas. In: proceeding of international conference on parallel problem solving in nature (PPSN 2004), pp 242–252
– reference: Glette K, Torresen J, Hovin M (2009) Intermediate level FPGA reconfiguration for an online EHW pattern recognition system. In: Proceeding of international conference on adaptive hardware and system, San Francisco, pp 19–26
– reference: HimavathiSFeedforward neural network implementation in FPGA using layer multiplexing for effective resource utilizationIEEE Trans Neural Netw200718388088810.1109/TNN.2007.891626
– reference: HuYPalreddySTompkinsWJA patient-adaptable ECG beat classifier using a mixture of experts approachIEEE Trans Biomed Eng199744989190010.1109/10.623058
– reference: OsowskiSHoaiLTMarkiewiczTSupport vector machine based expert system for reliable heartbeat recognitionIEEE Trans Biomed Eng200451458258910.1109/TBME.2004.824138
– reference: JiangWKongSGBlock-Based neural networks for personalized ECG signal classificationIEEE Trans Neural Netw20071861750176110.1109/TNN.2007.900239
– reference: Shayani H, Bentley PJ, Tyrell AM (2008) Hardware Implementation of a bio-plausible neuron model for evolution and growth of spiking neural networks on FPGA. In: Proceeding of NASA/ESA conference on adaptive hardware and systems, pp 236–243
– reference: HarikGLoboFGoldbergDThe compact genetic algorithmIEEE Trans Evol Comput19993428730910.1109/4235.797971
– reference: Jaros J, Schwarz J (2007) Parallel BMDA with probability model migration. In: Proceeding of IEEE congress on evolutionary computation, pp 1059–1066
– reference: Stefatos EF, Arlan T, Hamilton A (2008) Evolutionary techniques for precise and real-time implementation of low-power FIR filters. In: Proceeding of IEEE congress on evolutionary computation, Hong Kong, pp 2701–2708
– reference: Glette K, Torrensen J, Kaufmann P, Platzner M (2008) A comparison of evolvable hardware architecture for classification tasks. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware, pp 22–33
– reference: HamiltonPSTompkinsWJA real-time QRS detection algorithmIEEE Trans Biomed Eng198532230236
– reference: Xin J, Steve BF, Woods JV (2008) Efficient modeling of spiking neural network on a scalable chip multiprocessor. In: Proceeding of international joint conference neural network, pp 2812–2819
– volume: 8
  start-page: 111
  issue: 2
  year: 2004
  ident: 963_CR3
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.820662
– volume: 18
  start-page: 1750
  issue: 6
  year: 2007
  ident: 963_CR25
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.900239
– volume: 3
  start-page: 287
  issue: 4
  year: 1999
  ident: 963_CR16
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797971
– volume: 53
  start-page: 2535
  issue: 12
  year: 2006
  ident: 963_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.883802
– ident: 963_CR7
  doi: 10.1109/AHS.2009.46
– volume: 51
  start-page: 1196
  issue: 4
  year: 2004
  ident: 963_CR23
  publication-title: IEEE Trans Biomed Eng
– volume: 55
  start-page: 1193
  issue: 4
  year: 2007
  ident: 963_CR10
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.888883
– ident: 963_CR14
– volume: 32
  start-page: 230
  year: 1985
  ident: 963_CR27
  publication-title: IEEE Trans Biomed Eng
– volume: 44
  start-page: 891
  issue: 9
  year: 1997
  ident: 963_CR19
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.623058
– volume: 52
  start-page: 1224
  issue: 4
  year: 2003
  ident: 963_CR21
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2003.816841
– ident: 963_CR35
– ident: 963_CR33
  doi: 10.1109/AHS.2008.13
– ident: 963_CR8
  doi: 10.1109/WEAH.2009.4925661
– ident: 963_CR9
  doi: 10.1109/CEC.2008.4631161
– volume-title: Introduction to evolvable hardware: a practical guide for designing self-adaptive systems
  year: 2007
  ident: 963_CR2
– volume: 87
  start-page: 1423
  issue: 9
  year: 1999
  ident: 963_CR31
  publication-title: Proc IEEE
  doi: 10.1109/5.784219
– volume: 12
  start-page: 667
  issue: 5
  year: 2008
  ident: 963_CR28
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2008.923147
– volume-title: Introduction to evolvable hardware
  year: 2006
  ident: 963_CR1
  doi: 10.1007/0-387-31238-2
– volume: 12
  start-page: 307
  year: 2001
  ident: 963_CR32
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.914525
– volume: 101
  start-page: e215
  issue: 23
  year: 2001
  ident: 963_CR30
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 963_CR29
  publication-title: IEEE Eng Med Biol
  doi: 10.1109/51.932724
– volume: 6
  start-page: 443
  issue: 5
  year: 2002
  ident: 963_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.800880
– ident: 963_CR34
  doi: 10.1007/978-3-540-85857-7_32
– ident: 963_CR11
  doi: 10.1007/978-3-540-85857-7_3
– ident: 963_CR18
  doi: 10.1109/CEC.2007.4424587
– ident: 963_CR15
  doi: 10.1007/978-3-540-30217-9_25
– volume: 51
  start-page: 582
  issue: 4
  year: 2004
  ident: 963_CR22
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.824138
– volume-title: Efficient and accurate parallel genetic algorithms
  year: 2000
  ident: 963_CR12
– volume: 14
  start-page: 133
  issue: 1
  year: 2010
  ident: 963_CR4
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2025032
– volume: 12
  start-page: 187
  year: 2008
  ident: 963_CR5
  publication-title: Int J Knowl Intell Eng Syst
– ident: 963_CR36
  doi: 10.1109/CEC.2006.1688705
– volume: 19
  start-page: 281
  issue: 4
  year: 2007
  ident: 963_CR6
  publication-title: Connect Sci
  doi: 10.1080/09540090701725508
– volume: 34
  start-page: 58
  year: 1995
  ident: 963_CR20
  publication-title: J Med Biol Eng Comput
  doi: 10.1007/BF02637023
– volume: 18
  start-page: 880
  issue: 3
  year: 2007
  ident: 963_CR37
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.891626
– volume: 7
  start-page: 367
  issue: 4
  year: 2003
  ident: 963_CR17
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.814633
– ident: 963_CR26
SSID ssj0004685
Score 2.0633385
Snippet This paper presents a parallel genetic algorithm (GA) called the cellular compact genetic algorithm (c-cGA) and its implementation for adaptive hardware. An...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 1609
SubjectTerms Applied sciences
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer science; control theory; systems
Data Mining and Knowledge Discovery
Exact sciences and technology
Image Processing and Computer Vision
Inference from stochastic processes; time series analysis
Learning and adaptive systems
Mathematics
Multivariate analysis
Original Article
Parametric inference
Probability and statistics
Probability and Statistics in Computer Science
Sciences and techniques of general use
Statistics
Title A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification
URI https://link.springer.com/article/10.1007/s00521-012-0963-9
Volume 22
WOSCitedRecordID wos000319769300036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcEBCjKcYjykHTqBKbVr6OI5pg9M0jYd2q7ImgUmlm9oCfx-7j2kTDwnOTdLKcWyntr8P4IJQvQLtBgZhYRmOJTwicpeGK9AZc6Uta6ILsglvMPDH42BY9XFndbV7nZIsLPWi2Y3-YNLVlxsYdttGsA4b6O184msY3T8tNUMWPJx4baGSHseuU5nfLbHijLbnIkO56JLQ4ktmtHA4_ea_PnUXdqr4knVKhdiDNZXsQ7PmbmDVUT6AqMMI9TuOVcxQh6iVkYn4eZZO85dXhpEsE1LMyRYy6sv6EKliIpFsmmdsKenN8hnrdW8ZlYHgayOKxan4qHh4CI_93kP3zqgIF4zI9p3c4JL7WhLCWxRJS9rCQzvqcO15yqL0pWUqLoV2CfbMUdLlnnBt4Zja1cK_9qV9BI1klqhjYKbGyE9JvI1MtOPZMkBjMtHKlJGyArxEtsCsJR9GFRo5kWLE4QJHuRBiiEIMSYhh0ILLxZR5CcXx2-D2ynYuZnC0_jbGJC24qvcurI5t9vNyJ38afQpbvGTNQB04g0aevqlz2Ize82mWtmHjpjcYjtqF2n4Ciezkxg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CgpifWJ91D14UgLJJuZxLKW1Yi2iVXoL2-yuFmJbmqh_35k0KS0-QM_Z3YTZ2ZnZzMz3AZwRqleg3cAgLCzDsYRHRO7ScAU6Y660ZfV1RjbhdTp-rxfc5X3cSVHtXqQkM0s9a3ajP5h09eUGht22ESzDioMOiwDz7x-e5pohMx5OvLZQSY9jF6nM75ZYcEYbY5GgXPSU0OJLZjRzOM3yvz51Czbz-JLVpgqxDUtquAPlgruB5Ud5F6IaI9TvOFYxQx2iVkYm4ufRZJC-vDKMZJmQYky2kFFf1oeYKCaGkg3ShM0lvVk6Yo36FaMyEHxtRLE4FR9lD_fgsdno1ltGTrhgRLbvpAaX3NeSEN6iSFrSFh7aUYdrz1MWpS8tU3EptEuwZ46SLveEawvH1K4W_qUv7X0oDUdDdQDM1Bj5KYm3kb52PFsGaEz6WpkyUlaAl8gKmIXkwyhHIydSjDic4ShnQgxRiCEJMQwqcD6bMp5Ccfw2uLqwnbMZHK2_jTFJBS6KvQvzY5v8vNzhn0afwlqre9sO29edmyNY51MGDdSHYyilkzd1AqvRezpIJtVMdT8BGJPmEA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60ighiPbEedR98UoLJJuZ4LLVVUUrBg76FbXZXCzENSdS_704uWjxAfM7uJszO7sxkZr4P4ARRvTxpexpiYWmWwRwkcueazZQxpkIaxljmZBPOYOCORt6w5DlNq2r3KiVZ9DQgSlOUncdcnteNb_g3E8NgqikX3NS8RViysI4ew_X7p5nGyJyTU4UwWN5jmVVa87sl5gzTWsxSJSNZkFt8yZLmxqff_Pdnb8B66XeSTqEom7Agoi1oVpwOpDzi2xB0CKKBh6EIidItbHEkLHyeJpPs5ZUoD5cwzmK8Iwn2a32wRBAWcTLJUjKTDCfZlPS6VwTLQ9RrA_TRsSgpf7gDj_3eQ_daK4kYtMB0rUyjnLqSI_JbEHCDm8xR96tFpeMIA9Oahi4oZ9JGODRLcJs6zDaZpUtbMvfC5eYuNKJpJPaA6FJ5hIKrKGUsLcfknrpkxlLoPBCGp4LLFujVLvhBiVKOZBmhX-Mr50L0lRB9FKLvteC0nhIXEB2_DW7PbW09gyqrYCpfpQVn1T765XFOf15u_0-jj2FleNn3724GtwewSgtiDaUOh9DIkjdxBMvBezZJk3auxZ8gF-70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+genetic+algorithm+for+adaptive+hardware+and+its+application+to+ECG+signal+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Jewajinda%2C+Yutana&rft.au=Chongstitvatana%2C+Prabhas&rft.date=2013-06-01&rft.pub=Springer-Verlag&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=22&rft.issue=7-8&rft.spage=1609&rft.epage=1626&rft_id=info:doi/10.1007%2Fs00521-012-0963-9&rft.externalDocID=10_1007_s00521_012_0963_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon