Discrete-Time Expectation Maximization Algorithms for Markov-Modulated Poisson Processes
In this paper, we consider parameter estimation Markov-modulated Poisson processes via robust filtering and smoothing techniques. Using the expectation maximization algorithm framework, our filters and smoothers can be applied to estimate the parameters of our model in either an online configuration...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 53; číslo 1; s. 247 - 256 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we consider parameter estimation Markov-modulated Poisson processes via robust filtering and smoothing techniques. Using the expectation maximization algorithm framework, our filters and smoothers can be applied to estimate the parameters of our model in either an online configuration or an offline configuration. Further, our estimator dynamics do not involve stochastic integrals and our new formulas, in terms of time integrals, are easily discretized, and are written in numerically stable forms in W. P. Malcolm, R. J. Elliott, and J. van der Hoek, ldquoOn the numerical stability of time-discretized state estimation via clark transformations,rdquo presented at the IEEE Conf. Decision Control, Mauii, HI, Dec. 2003. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2007.914305 |