Distributed Identification of Top-l Inner Product Elements and its Application in a Peer-to-Peer Network
The inner product measures how closely two feature vectors are related. It is an important primitive for many popular data mining tasks, for example, clustering, classification, correlation computation, and decision tree construction. If the entire data set is available at a single site, then comput...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 20; no. 4; pp. 475 - 488 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.04.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The inner product measures how closely two feature vectors are related. It is an important primitive for many popular data mining tasks, for example, clustering, classification, correlation computation, and decision tree construction. If the entire data set is available at a single site, then computing the inner product matrix and identifying the top (in terms of magnitude) entries is trivial. However, in many real-world scenarios, data is distributed across many locations and transmitting the data to a central server would be quite communication intensive and not scalable. This paper presents an approximate local algorithm for identifying top-l, inner products among pairs of feature vectors in a large asynchronous distributed environment such as a peer-to-peer (P2P) network. We develop a probabilistic algorithm for this purpose using order statistics and the Hoeffding bound. We present experimental results to show the effectiveness and scalability of the algorithm. Finally, we demonstrate an application of this technique for interest-based community formation in a P2P environment. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1041-4347 1558-2191 |
| DOI: | 10.1109/TKDE.2007.190714 |