Incremental Maintenance of Online Summaries Over Multiple Streams
We propose a novel approach based on predictive quantization (PQ) for online summarization of multiple time-varying data streams. A synopsis over a sliding window of most recent entries is computed in one pass and dynamically updated in constant time. The correlation between consecutive data element...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 20; no. 2; pp. 216 - 229 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.02.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a novel approach based on predictive quantization (PQ) for online summarization of multiple time-varying data streams. A synopsis over a sliding window of most recent entries is computed in one pass and dynamically updated in constant time. The correlation between consecutive data elements is effectively taken into account without the need for preprocessing. We extend PQ to multiple streams and propose structures for real-time summarization and querying of a massive number of streams. Queries on any subsequence of a sliding window over multiple streams are processed in real time. We examine each component of the proposed approach, prediction, and quantization separately and investigate the space-accuracy trade-off for synopsis generation. Complementing the theoretical optimality of PQ-based approaches, we show that the proposed technique, even for very short prediction windows, significantly outperforms the current techniques for a wide variety of query types on both synthetic and real data sets. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1041-4347 1558-2191 |
| DOI: | 10.1109/TKDE.2007.190693 |