The Arithmetic Complexity of Tensor Contraction

We investigate the algebraic complexity of tensor calculus. We consider a generalization of iterated matrix product to tensors and show that the resulting formulas exactly capture V P , the class of polynomial families efficiently computable by arithmetic circuits. This gives a natural and robust ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems Jg. 58; H. 4; S. 506 - 527
Hauptverfasser: Capelli, Florent, Durand, Arnaud, Mengel, Stefan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2016
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:1432-4350, 1433-0490
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the algebraic complexity of tensor calculus. We consider a generalization of iterated matrix product to tensors and show that the resulting formulas exactly capture V P , the class of polynomial families efficiently computable by arithmetic circuits. This gives a natural and robust characterization of this complexity class that despite its naturalness is not very well understood so far.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-015-9630-8