The Arithmetic Complexity of Tensor Contraction
We investigate the algebraic complexity of tensor calculus. We consider a generalization of iterated matrix product to tensors and show that the resulting formulas exactly capture V P , the class of polynomial families efficiently computable by arithmetic circuits. This gives a natural and robust ch...
Gespeichert in:
| Veröffentlicht in: | Theory of computing systems Jg. 58; H. 4; S. 506 - 527 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2016
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 1432-4350, 1433-0490 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We investigate the algebraic complexity of tensor calculus. We consider a generalization of iterated matrix product to tensors and show that the resulting formulas exactly capture
V
P
, the class of polynomial families efficiently computable by arithmetic circuits. This gives a natural and robust characterization of this complexity class that despite its naturalness is not very well understood so far. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1432-4350 1433-0490 |
| DOI: | 10.1007/s00224-015-9630-8 |