Design and Performance Evaluation of Image Processing Algorithms on GPUs

In this paper, we construe key factors in design and evaluation of image processing algorithms on the massive parallel graphics processing units (GPUs) using the compute unified device architecture (CUDA) programming model. A set of metrics, customized for image processing, is proposed to quantitati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 22; číslo 1; s. 91 - 104
Hlavní autoři: In Kyu Park, Singhal, Nitin, Man Hee Lee, Sungdae Cho, Kim, Chris W
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we construe key factors in design and evaluation of image processing algorithms on the massive parallel graphics processing units (GPUs) using the compute unified device architecture (CUDA) programming model. A set of metrics, customized for image processing, is proposed to quantitatively evaluate algorithm characteristics. In addition, we show that a range of image processing algorithms map readily to CUDA using multiview stereo matching, linear feature extraction, JPEG2000 image encoding, and nonphotorealistic rendering (NPR) as our example applications. The algorithms are carefully selected from major domains of image processing, so they inherently contain a variety of subalgorithms with diverse characteristics when implemented on the GPU. Performance is evaluated in terms of execution time and is compared to the fastest host-only version implemented using OpenMP. It is shown that the observed speedup varies extensively depending on the characteristics of each algorithm. Intensive analysis is conducted to show the appropriateness of the proposed metrics in predicting the effectiveness of an application for parallel implementation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2010.115