1D Organic Micro/Nanostructures for Photonics

1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optica...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 31; no. 7
Main Authors: Shi, Ying‐Li, Wang, Xue‐Dong
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.02.2021
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optical confinement, and so forth. These inherent characteristics of OMNSs make them have broad application prospects in photonics devices, such as nanolasers, optical waveguides, and optical logical gates. In this review, the recent processes of OMNSs in terms of light generation, light confinement, and propagation are introduced, separately. Some representative works of OMNSs are discussed in the direction of optical modulation and processing. However, huge challenges still remain before the OMNSs are actually used as components of optical circuits in the photonics chips. The summary and the expectations are presented for the future development of 1D organic micro/nanostructures photonics. 1D organic micro/nanostructures have great potential in nanoscale integrated optical circuits as photonic components due to their intrinsic capabilities to generate and confine optical signals efficiently. Herein, the recent advances of 1D micro/nanostructures in photonic applications are reviewed. Then, the prospects and suggestions for future development are presented.
AbstractList 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optical confinement, and so forth. These inherent characteristics of OMNSs make them have broad application prospects in photonics devices, such as nanolasers, optical waveguides, and optical logical gates. In this review, the recent processes of OMNSs in terms of light generation, light confinement, and propagation are introduced, separately. Some representative works of OMNSs are discussed in the direction of optical modulation and processing. However, huge challenges still remain before the OMNSs are actually used as components of optical circuits in the photonics chips. The summary and the expectations are presented for the future development of 1D organic micro/nanostructures photonics.
1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optical confinement, and so forth. These inherent characteristics of OMNSs make them have broad application prospects in photonics devices, such as nanolasers, optical waveguides, and optical logical gates. In this review, the recent processes of OMNSs in terms of light generation, light confinement, and propagation are introduced, separately. Some representative works of OMNSs are discussed in the direction of optical modulation and processing. However, huge challenges still remain before the OMNSs are actually used as components of optical circuits in the photonics chips. The summary and the expectations are presented for the future development of 1D organic micro/nanostructures photonics. 1D organic micro/nanostructures have great potential in nanoscale integrated optical circuits as photonic components due to their intrinsic capabilities to generate and confine optical signals efficiently. Herein, the recent advances of 1D micro/nanostructures in photonic applications are reviewed. Then, the prospects and suggestions for future development are presented.
Author Wang, Xue‐Dong
Shi, Ying‐Li
Author_xml – sequence: 1
  givenname: Ying‐Li
  orcidid: 0000-0002-1976-5113
  surname: Shi
  fullname: Shi, Ying‐Li
  organization: The University of Hong Kong
– sequence: 2
  givenname: Xue‐Dong
  orcidid: 0000-0003-0935-0835
  surname: Wang
  fullname: Wang, Xue‐Dong
  email: wangxuedong@suda.edu.cn
  organization: Soochow University
BookMark eNqFkMFPwjAUhxuDiYBePS_xPOhru249EhA1AfHAwVvTjVcdgRXbLYb_3pEZTEyMp_cOv-_9Xr4B6VWuQkJugY6AUjY2G7sfMcoozUCoC9IHCTLmlGW98w6vV2QQwpZSSFMu-iSGWbTyb6Yqi2hZFt6Nn03lQu2bom48hsg6H728u9q1iXBNLq3ZBbz5nkOynt-vp4_xYvXwNJ0s4oJnXMWGSyVzoAgSARJjU2sRE2YsR-SQGybEhjIpmGK4MQKpyk0KuU2gSFHxIbnrzh68-2gw1HrrGl-1jZqJLE0TloBsU6Mu1X4dgkerD77cG3_UQPXJiD4Z0WcjLSB-AUVZm7p0Ve1NufsbUx32We7w-E-Jnszmyx_2CzswduQ
CitedBy_id crossref_primary_10_1002_smll_202203961
crossref_primary_10_1002_anie_202311348
crossref_primary_10_1002_cjoc_202200313
crossref_primary_10_1002_pssa_202300243
crossref_primary_10_1039_D5NH00228A
crossref_primary_10_1039_D5TC01924A
crossref_primary_10_1007_s11426_024_2126_0
crossref_primary_10_1016_j_matt_2022_08_001
crossref_primary_10_3390_molecules28124631
crossref_primary_10_1039_D3QM00461A
crossref_primary_10_1016_j_dyepig_2023_111899
crossref_primary_10_1039_D5TC01067E
crossref_primary_10_1007_s40843_023_2561_8
crossref_primary_10_1002_adma_202504256
crossref_primary_10_1007_s11426_022_1375_y
crossref_primary_10_3390_molecules26040958
crossref_primary_10_31857_S0514749223120030
crossref_primary_10_1021_acsami_5c09721
crossref_primary_10_1016_j_nanoen_2021_106673
crossref_primary_10_1007_s40820_022_00988_1
crossref_primary_10_1007_s40843_022_2210_9
crossref_primary_10_1016_j_orgel_2022_106431
crossref_primary_10_1002_adfm_202105506
crossref_primary_10_1002_adom_202201000
crossref_primary_10_1002_aelm_202200753
crossref_primary_10_1002_ange_202311348
crossref_primary_10_1016_j_dyepig_2024_112593
crossref_primary_10_1134_S1070428023120035
crossref_primary_10_1002_adom_202202895
crossref_primary_10_1002_adom_202002264
crossref_primary_10_1016_j_jlumin_2022_118950
crossref_primary_10_35848_1347_4065_acbf8f
crossref_primary_10_1016_j_dyepig_2022_110428
crossref_primary_10_1016_j_dyepig_2025_112949
crossref_primary_10_1002_adfm_202113025
crossref_primary_10_1002_adsr_202300169
crossref_primary_10_1007_s12274_021_3944_4
crossref_primary_10_1016_j_dyepig_2022_110572
crossref_primary_10_1021_acs_jpcc_4c07937
crossref_primary_10_1016_j_optmat_2024_116614
crossref_primary_10_1007_s40843_024_3140_4
crossref_primary_10_3390_nano14100822
Cites_doi 10.1021/jp071455e
10.1002/adfm.201102284
10.1016/j.physe.2007.10.009
10.1126/sciadv.1700688
10.1002/adma.201000731
10.1038/nphoton.2007.277
10.1088/0953-8984/6/28/012
10.1038/nnano.2007.50
10.1002/adma.201908388
10.1002/adfm.201202108
10.1021/acs.jpcc.5b10125
10.1557/jmr.2010.7
10.1039/C7NR08931G
10.1021/nn204848r
10.1016/j.cplett.2007.12.045
10.1002/adfm.201102173
10.1021/acsphotonics.7b00423
10.1002/adma.201506062
10.1002/adma.201100827
10.1002/anie.201502684
10.1021/jp072488x
10.1021/jacs.7b01574
10.1039/C3TC32474E
10.1002/adma.200902024
10.1002/adma.201603652
10.1038/nature01289
10.1002/anie.201302894
10.1021/ja077600j
10.1016/j.matt.2020.01.023
10.1038/s41467-020-18144-x
10.1021/nl0610477
10.1021/cm060102
10.1021/jacs.8b04699
10.1016/j.orgel.2012.01.021
10.1038/s41467-019-11731-7
10.1039/c0jm04437g
10.1002/smll.201001217
10.1002/lpor.201300222
10.1002/adma.201503019
10.1038/nmat1564
10.1021/acsphotonics.9b00606
10.1002/adma.201201579
10.1126/sciadv.1700225
10.1021/nl034217d
10.1002/smll.201401487
10.1021/am4011379
10.1021/acs.nanolett.6b00526
10.1002/anie.201810514
10.1002/anie.201501060
10.1021/cm100798q
10.1002/adma.201003829
10.1039/C4CS00116H
10.3390/nano7110381
10.1038/ncomms7737
10.1021/jacs.5b11525
10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
10.1021/acs.accounts.6b00209
10.1021/ja806162h
10.1021/nl050469y
10.1002/adom.202000959
10.1002/ange.201106652
10.1021/jacs.9b07645
10.1002/adma.201505594
10.1038/nnano.2007.35
10.1063/1.3610677
10.1021/acsnano.7b04584
10.1002/anie.202002627
10.1063/1.2115087
10.1002/pssa.2210130237
10.1021/nn901567z
10.1002/adma.201103032
10.1103/PhysRevB.49.14643
10.1002/adma.200700542
10.1021/ja200549v
10.1039/c3cp54994a
10.1002/advs.201500130
10.1016/j.nantod.2019.02.010
10.1021/nl901314u
10.1002/adma.201104373
10.1021/ja809360v
10.1103/PhysRevB.75.073308
10.1021/ja0642109
10.1002/anie.201700447
10.1038/s41467-017-00038-0
10.1039/c3tc30143e
10.1021/ic0601384
10.1002/anie.202003820
10.1021/ja410069k
10.1002/anie.202002492
10.1002/adfm.201703470
10.1021/acs.nanolett.9b02943
10.1021/acs.jpcc.5b06063
10.1038/srep00393
10.1021/jacs.0c00135
10.1021/nl052471v
10.1038/nature01937
10.1002/adma.201300325
10.1021/acs.chemrev.9b00240
10.1021/ar500192v
10.1038/nmat4271
10.1021/acsami.7b13063
10.1002/adma.201502577
10.1021/nl100010v
10.1007/s40843-019-1216-5
10.1039/C7TC04621A
10.1002/adom.201901643
10.1002/adma.201100353
10.1039/c3tc32206h
10.1002/adom.201801775
10.1038/nphoton.2011.52
10.1002/adfm.201902981
10.1021/ja9084435
10.1002/anie.201912236
10.1126/sciadv.aap9861
10.1002/adma.201203829
10.1002/adma.201800814
10.1039/c3nr06760b
10.1002/adma.200800123
10.1103/PhysRevLett.120.257401
10.1021/nl902860d
10.1021/acsami.8b22317
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202008149
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202008149
ADFM202008149
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20170330
– fundername: National Natural Science Foundation of China
  funderid: 21703148; 21971185
– fundername: State Administration of Foreign Experts Affairs
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: 111 Project
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3839-a3696b10e16e115af7ffee52af3ee31ba244d0264292eda4e09ba71bf51c7e93
IEDL.DBID DRFUL
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Fri Jul 25 05:54:13 EDT 2025
Tue Nov 18 21:58:20 EST 2025
Sat Nov 29 07:24:06 EST 2025
Wed Jan 22 16:31:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3839-a3696b10e16e115af7ffee52af3ee31ba244d0264292eda4e09ba71bf51c7e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1976-5113
0000-0003-0935-0835
PQID 2487752516
PQPubID 2045204
PageCount 20
ParticipantIDs proquest_journals_2487752516
crossref_primary_10_1002_adfm_202008149
crossref_citationtrail_10_1002_adfm_202008149
wiley_primary_10_1002_adfm_202008149_ADFM202008149
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2013; 1
2012; 124
1960; 3
2019; 11
2019; 10
2002; 12
2019; 19
2020; 11
2007; 75
2012; 13
2013; 5
2014; 136
2018; 48
2010; 22
2018; 4
2019; 25
2013; 52
2014; 16
2019; 29
2018; 30
2007; 2
2008; 20
2012; 24
2016; 49
2012; 22
2010; 4
2005; 5840
2019; 7
2019; 6
2020; 142
2011; 82
2015; 54
2014; 47
2005; 87
2020; 32
2016; 16
2011; 5
2011; 7
2011; 133
2017; 139
2006; 45
2017; 56
2005; 5
2015; 119
2008; 40
2016; 28
2018; 10
2008; 130
2018; 120
2017; 5
2017; 7
2017; 8
2013; 25
2017; 3
2017; 4
2020; 63
2013; 23
2019; 58
2020; 59
2008; 2
2017; 9
2020; 8
2020; 2
2014; 2
2015; 44
2003; 3
2011; 21
2019; 119
2011; 23
2011; 26
2014; 8
1972; 13
2014; 6
2015; 2
2015; 14
2007; 129
2015; 6
2018; 140
2017; 27
2015; 11
2006; 5
2006; 18
2006; 6
1994; 49
2017; 29
2009; 131
2019; 141
2016; 120
2012; 2
2015; 27
2003; 424
2020
2017; 11
2007; 111
2010; 132
2009; 9
2016; 138
2012; 6
2008; 452
2003; 421
1994; 6
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
Shpol'skiIĭ É. V. (e_1_2_9_72_1) 1960; 3
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
Torii K. (e_1_2_9_31_1) 2017; 3
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
Zhao J. (e_1_2_9_27_1) 2018; 48
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
Zhuo M. P. (e_1_2_9_54_1) 2020; 2
e_1_2_9_28_1
e_1_2_9_47_1
Badenes G. (e_1_2_9_73_1) 2005; 5840
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 131
  start-page: 3950
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1822
  year: 2006
  publication-title: Nano Lett.
– volume: 28
  start-page: 3209
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2036
  year: 2017
  publication-title: ACS Photonics
– volume: 6
  start-page: 5373
  year: 1994
  publication-title: J. Phys.: Condens. Matter
– volume: 2
  start-page: 2827
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 421
  start-page: 238
  year: 2003
  publication-title: Nature
– volume: 1
  start-page: 3633
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 16
  start-page: 4754
  year: 2016
  publication-title: Nano Lett.
– volume: 40
  start-page: 2468
  year: 2008
  publication-title: Phys. E
– volume: 11
  start-page: 4485
  year: 2020
  publication-title: Nat. Commun.
– volume: 424
  start-page: 824
  year: 2003
  publication-title: Nature
– volume: 133
  start-page: 7276
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 452
  start-page: 168
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 56
  start-page: 3616
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 10
  start-page: 5140
  year: 2018
  publication-title: Nanoscale
– volume: 10
  start-page: 3839
  year: 2019
  publication-title: Nat. Commun.
– volume: 136
  start-page: 2382
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2302
  year: 2006
  publication-title: Chem. Mater.
– volume: 2
  start-page: 180
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 625
  year: 2017
  publication-title: Chem. Nanomater.
– volume: 3
  start-page: 919
  year: 2003
  publication-title: Nano Lett.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 3661
  year: 2010
  publication-title: Adv. Mater.
– volume: 13
  start-page: 815
  year: 2012
  publication-title: Org. Electron.
– volume: 8
  start-page: 687
  year: 2014
  publication-title: Laser Photonics Rev.
– volume: 11
  start-page: 5298
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 1319
  year: 2016
  publication-title: Adv. Mater.
– volume: 47
  start-page: 3448
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1293
  year: 2005
  publication-title: Nano Lett.
– volume: 5840
  start-page: 584
  year: 2005
  publication-title: SPIE
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 8713
  year: 2013
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 2
  start-page: 141
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 2935
  year: 2009
  publication-title: Nano Lett.
– volume: 13
  start-page: 651
  year: 1972
  publication-title: Phys. Status Solidi A
– volume: 131
  start-page: 3158
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1630
  year: 2010
  publication-title: ACS Nano
– volume: 139
  start-page: 6376
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 82
  year: 2011
  publication-title: Rev. Sci. Instrum.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  start-page: 381
  year: 2017
  publication-title: Nanomaterials
– volume: 16
  start-page: 7173
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 413
  year: 2020
  publication-title: CCS Chem.
– volume: 129
  start-page: 3527
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 86
  year: 2008
  publication-title: Nat. Photonics
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 161
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 3627
  year: 2013
  publication-title: Adv. Mater.
– volume: 19
  start-page: 7877
  year: 2019
  publication-title: Nano Lett.
– volume: 20
  start-page: 1661
  year: 2008
  publication-title: Adv. Mater.
– volume: 120
  start-page: 1186
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 189
  year: 2011
  publication-title: Small
– volume: 28
  start-page: 2874
  year: 2016
  publication-title: Adv. Mater.
– volume: 142
  start-page: 7265
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 323
  year: 2002
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 25
  start-page: 13
  year: 2019
  publication-title: Nano Today
– volume: 24
  start-page: 216
  year: 2012
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1233
  year: 2020
  publication-title: Matter
– volume: 111
  start-page: 8671
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 138
  start-page: 1118
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 9177
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 20
  year: 2017
  publication-title: Nat. Commun.
– volume: 54
  start-page: 7125
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 22
  start-page: 1330
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 23
  start-page: 839
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 636
  year: 2015
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1888
  year: 2012
  publication-title: ACS Nano
– volume: 22
  start-page: 3735
  year: 2010
  publication-title: Chem. Mater.
– volume: 25
  start-page: 2784
  year: 2013
  publication-title: Adv. Mater.
– volume: 119
  start-page: 9153
  year: 2019
  publication-title: Chem. Rev.
– volume: 21
  start-page: 4837
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 27
  start-page: 7305
  year: 2015
  publication-title: Adv. Mater.
– volume: 63
  start-page: 1464
  year: 2020
  publication-title: Sci. China Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 9
  start-page: 4515
  year: 2009
  publication-title: Nano Lett.
– volume: 130
  start-page: 3937
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 1691
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 48
  start-page: 127
  year: 2018
  publication-title: Sci. China:Chem.
– volume: 23
  start-page: 3659
  year: 2011
  publication-title: Adv. Mater.
– volume: 2
  start-page: 2773
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 1380
  year: 2011
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1223
  year: 2010
  publication-title: Adv. Mater.
– volume: 45
  start-page: 7555
  year: 2006
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 393
  year: 2012
  publication-title: Sci. Rep.
– volume: 6
  start-page: 4174
  year: 2014
  publication-title: Nanoscale
– volume: 132
  start-page: 1742
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 1117
  year: 2012
  publication-title: Adv. Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 24
  start-page: 497
  year: 2012
  publication-title: Adv. Mater.
– volume: 11
  start-page: 45
  year: 2015
  publication-title: Small
– volume: 6
  start-page: 1928
  year: 2006
  publication-title: Nano Lett.
– volume: 54
  start-page: 7037
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 5
  start-page: 6182
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 6737
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  year: 1994
  publication-title: Phys. Rev. B
– volume: 124
  start-page: 3616
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 1005
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 311
  year: 2011
  publication-title: J. Mater. Res. Technol.
– volume: 5
  start-page: 102
  year: 2006
  publication-title: Nat. Mater.
– volume: 3
  start-page: 372
  year: 1960
  publication-title: Phys.‐Usp.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 301
  year: 2011
  publication-title: Nat. Photonics
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1374
  year: 2010
  publication-title: Nano Lett.
– volume: 23
  start-page: 2796
  year: 2011
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1798
  year: 2019
  publication-title: ACS Photonics
– volume: 20
  start-page: 79
  year: 2008
  publication-title: Adv. Mater.
– ident: e_1_2_9_102_1
  doi: 10.1021/jp071455e
– ident: e_1_2_9_87_1
  doi: 10.1002/adfm.201102284
– ident: e_1_2_9_37_1
  doi: 10.1016/j.physe.2007.10.009
– ident: e_1_2_9_126_1
  doi: 10.1126/sciadv.1700688
– ident: e_1_2_9_93_1
  doi: 10.1002/adma.201000731
– ident: e_1_2_9_10_1
  doi: 10.1038/nphoton.2007.277
– ident: e_1_2_9_76_1
  doi: 10.1088/0953-8984/6/28/012
– ident: e_1_2_9_26_1
  doi: 10.1038/nnano.2007.50
– ident: e_1_2_9_88_1
  doi: 10.1002/adma.201908388
– ident: e_1_2_9_96_1
  doi: 10.1002/adfm.201202108
– ident: e_1_2_9_97_1
  doi: 10.1021/acs.jpcc.5b10125
– ident: e_1_2_9_90_1
  doi: 10.1557/jmr.2010.7
– ident: e_1_2_9_57_1
  doi: 10.1039/C7NR08931G
– ident: e_1_2_9_8_1
  doi: 10.1021/nn204848r
– ident: e_1_2_9_101_1
  doi: 10.1016/j.cplett.2007.12.045
– ident: e_1_2_9_32_1
  doi: 10.1002/adfm.201102173
– ident: e_1_2_9_16_1
  doi: 10.1021/acsphotonics.7b00423
– ident: e_1_2_9_82_1
  doi: 10.1002/adma.201506062
– ident: e_1_2_9_98_1
  doi: 10.1002/adma.201100827
– ident: e_1_2_9_28_1
  doi: 10.1002/anie.201502684
– ident: e_1_2_9_56_1
  doi: 10.1021/jp072488x
– ident: e_1_2_9_71_1
  doi: 10.1021/jacs.7b01574
– ident: e_1_2_9_6_1
  doi: 10.1039/C3TC32474E
– ident: e_1_2_9_124_1
  doi: 10.1002/adma.200902024
– ident: e_1_2_9_58_1
  doi: 10.1002/adma.201603652
– ident: e_1_2_9_60_1
  doi: 10.1038/nature01289
– ident: e_1_2_9_118_1
  doi: 10.1002/anie.201302894
– ident: e_1_2_9_18_1
  doi: 10.1021/ja077600j
– ident: e_1_2_9_29_1
  doi: 10.1016/j.matt.2020.01.023
– ident: e_1_2_9_62_1
  doi: 10.1038/s41467-020-18144-x
– ident: e_1_2_9_123_1
  doi: 10.1021/nl0610477
– ident: e_1_2_9_67_1
  doi: 10.1021/cm060102
– ident: e_1_2_9_116_1
  doi: 10.1021/jacs.8b04699
– ident: e_1_2_9_84_1
  doi: 10.1016/j.orgel.2012.01.021
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-019-11731-7
– ident: e_1_2_9_33_1
  doi: 10.1039/c0jm04437g
– ident: e_1_2_9_20_1
  doi: 10.1002/smll.201001217
– ident: e_1_2_9_1_1
  doi: 10.1002/lpor.201300222
– ident: e_1_2_9_89_1
  doi: 10.1002/adma.201503019
– ident: e_1_2_9_15_1
  doi: 10.1038/nmat1564
– ident: e_1_2_9_53_1
  doi: 10.1021/acsphotonics.9b00606
– ident: e_1_2_9_59_1
  doi: 10.1002/adma.201201579
– ident: e_1_2_9_117_1
  doi: 10.1126/sciadv.1700225
– ident: e_1_2_9_11_1
  doi: 10.1021/nl034217d
– ident: e_1_2_9_4_1
  doi: 10.1002/smll.201401487
– ident: e_1_2_9_100_1
  doi: 10.1021/am4011379
– ident: e_1_2_9_65_1
  doi: 10.1021/acs.nanolett.6b00526
– ident: e_1_2_9_108_1
  doi: 10.1002/anie.201810514
– ident: e_1_2_9_81_1
  doi: 10.1002/anie.201501060
– ident: e_1_2_9_41_1
  doi: 10.1021/cm100798q
– volume: 3
  start-page: 625
  year: 2017
  ident: e_1_2_9_31_1
  publication-title: Chem. Nanomater.
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.201003829
– ident: e_1_2_9_7_1
  doi: 10.1039/C4CS00116H
– ident: e_1_2_9_9_1
  doi: 10.3390/nano7110381
– ident: e_1_2_9_95_1
  doi: 10.1038/ncomms7737
– ident: e_1_2_9_36_1
  doi: 10.1021/jacs.5b11525
– ident: e_1_2_9_14_1
  doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
– ident: e_1_2_9_22_1
  doi: 10.1021/acs.accounts.6b00209
– ident: e_1_2_9_19_1
  doi: 10.1021/ja806162h
– volume: 5840
  start-page: 584
  year: 2005
  ident: e_1_2_9_73_1
  publication-title: SPIE
– ident: e_1_2_9_44_1
  doi: 10.1021/nl050469y
– ident: e_1_2_9_92_1
  doi: 10.1002/adom.202000959
– ident: e_1_2_9_39_1
  doi: 10.1002/ange.201106652
– ident: e_1_2_9_107_1
  doi: 10.1021/jacs.9b07645
– ident: e_1_2_9_69_1
  doi: 10.1002/adma.201505594
– ident: e_1_2_9_70_1
  doi: 10.1038/nnano.2007.35
– ident: e_1_2_9_74_1
  doi: 10.1063/1.3610677
– ident: e_1_2_9_49_1
  doi: 10.1021/acsnano.7b04584
– ident: e_1_2_9_109_1
  doi: 10.1002/anie.202002627
– ident: e_1_2_9_77_1
  doi: 10.1063/1.2115087
– ident: e_1_2_9_24_1
  doi: 10.1002/pssa.2210130237
– ident: e_1_2_9_63_1
  doi: 10.1021/nn901567z
– ident: e_1_2_9_83_1
  doi: 10.1002/adma.201103032
– ident: e_1_2_9_110_1
  doi: 10.1103/PhysRevB.49.14643
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.200700542
– volume: 2
  start-page: 413
  year: 2020
  ident: e_1_2_9_54_1
  publication-title: CCS Chem.
– volume: 48
  start-page: 127
  year: 2018
  ident: e_1_2_9_27_1
  publication-title: Sci. China:Chem.
– ident: e_1_2_9_34_1
  doi: 10.1021/ja200549v
– ident: e_1_2_9_40_1
  doi: 10.1039/c3cp54994a
– ident: e_1_2_9_119_1
  doi: 10.1002/advs.201500130
– ident: e_1_2_9_68_1
  doi: 10.1016/j.nantod.2019.02.010
– ident: e_1_2_9_125_1
  doi: 10.1021/nl901314u
– ident: e_1_2_9_86_1
  doi: 10.1002/adma.201104373
– ident: e_1_2_9_64_1
  doi: 10.1021/ja809360v
– ident: e_1_2_9_79_1
  doi: 10.1103/PhysRevB.75.073308
– ident: e_1_2_9_21_1
  doi: 10.1021/ja0642109
– ident: e_1_2_9_115_1
  doi: 10.1002/anie.201700447
– ident: e_1_2_9_120_1
  doi: 10.1038/s41467-017-00038-0
– ident: e_1_2_9_2_1
  doi: 10.1039/c3tc30143e
– ident: e_1_2_9_12_1
  doi: 10.1021/ic0601384
– ident: e_1_2_9_106_1
  doi: 10.1002/anie.202003820
– ident: e_1_2_9_50_1
  doi: 10.1021/ja410069k
– ident: e_1_2_9_104_1
  doi: 10.1002/anie.202002492
– ident: e_1_2_9_30_1
  doi: 10.1002/adfm.201703470
– ident: e_1_2_9_80_1
  doi: 10.1021/acs.nanolett.9b02943
– ident: e_1_2_9_55_1
  doi: 10.1021/acs.jpcc.5b06063
– ident: e_1_2_9_85_1
  doi: 10.1038/srep00393
– ident: e_1_2_9_66_1
  doi: 10.1021/jacs.0c00135
– ident: e_1_2_9_122_1
  doi: 10.1021/nl052471v
– ident: e_1_2_9_121_1
  doi: 10.1038/nature01937
– ident: e_1_2_9_23_1
  doi: 10.1002/adma.201300325
– ident: e_1_2_9_3_1
  doi: 10.1021/acs.chemrev.9b00240
– ident: e_1_2_9_51_1
  doi: 10.1021/ar500192v
– ident: e_1_2_9_5_1
  doi: 10.1038/nmat4271
– ident: e_1_2_9_17_1
  doi: 10.1021/acsami.7b13063
– ident: e_1_2_9_46_1
  doi: 10.1002/adma.201502577
– volume: 3
  start-page: 372
  year: 1960
  ident: e_1_2_9_72_1
  publication-title: Phys.‐Usp.
– ident: e_1_2_9_111_1
  doi: 10.1021/nl100010v
– ident: e_1_2_9_48_1
  doi: 10.1007/s40843-019-1216-5
– ident: e_1_2_9_112_1
  doi: 10.1039/C7TC04621A
– ident: e_1_2_9_38_1
  doi: 10.1002/adom.201901643
– ident: e_1_2_9_45_1
  doi: 10.1002/adma.201100353
– ident: e_1_2_9_61_1
  doi: 10.1039/c3tc32206h
– ident: e_1_2_9_113_1
  doi: 10.1002/adom.201801775
– ident: e_1_2_9_75_1
  doi: 10.1038/nphoton.2011.52
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.201902981
– ident: e_1_2_9_114_1
  doi: 10.1021/ja9084435
– ident: e_1_2_9_103_1
  doi: 10.1002/anie.201912236
– ident: e_1_2_9_91_1
  doi: 10.1126/sciadv.aap9861
– ident: e_1_2_9_47_1
  doi: 10.1002/adma.201203829
– ident: e_1_2_9_105_1
  doi: 10.1002/adma.201800814
– ident: e_1_2_9_99_1
  doi: 10.1039/c3nr06760b
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.200800123
– ident: e_1_2_9_78_1
  doi: 10.1103/PhysRevLett.120.257401
– ident: e_1_2_9_127_1
  doi: 10.1021/nl902860d
– ident: e_1_2_9_94_1
  doi: 10.1021/nn901567z
– ident: e_1_2_9_52_1
  doi: 10.1021/acsami.8b22317
SSID ssj0017734
Score 2.5572186
SecondaryResourceType review_article
Snippet 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Confinement
Logic circuits
Materials science
nanoscale light source
Nanostructure
optical processing
optical transmission
Optical waveguides
organic micro/nanostructures
organic semiconductor molecules
Photonics
Title 1D Organic Micro/Nanostructures for Photonics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202008149
https://www.proquest.com/docview/2487752516
Volume 31
WOSCitedRecordID wos000587354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB609aAH32J9sQfBU-gm-4h7LNbFgy1FKvQW8kRBWnGrv9_J7nbbHkTQ40I2hMkk801m5huAax5l2qahIZaiBse4VqKU1sQwY6TkqWFSls0m-HB4O5lko5Uq_oofonlw8yejvK_9AZeq6C5JQ6VxvpLcx-8R5W9Cm6Hyxi1o95_y58cmksB5FVlOqc_xopMFcWPIuuszrBumJdpcxayl0cn3_r_cfditAWfQqzTkADbs9BB2VmgIj4DQflDVZOpg4BP0unjnzipm2U90xwMEtsHoZTb3NLrFMYzz-_HdA6nbKBCN7mdGpG_Zp2hoaWoR_0nHnbM2YdJF1kZUSbTwBl0x37jKGhnbMFOSU-USqrnNohNoTWdTewoBN-iOmChx3CSxlpHimkYqdR4mKpyzA2QhQqFrinHf6eJNVOTITHgpiEYKHbhpxr9X5Bo_jrxY7IioD1khGDpbPEGAlnaAlbL_ZRbR6-eD5uvsLz-dwzbzWS1l3vYFtHAr7CVs6a_5a_FxVSvfN53H2hc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60FdSDb7E-9yB4WrrJPuIei3Wp2JYiFXoLeaIgrdjq73eyu922BxHE40I2hMkk801m5huAaxamyiSB9g1BDY5wrb6USvmaai0ESzQVIm82wfr929EoHZTZhK4WpuCHqB7c3MnI72t3wN2DdHPBGiq0daXkLoCPMH8d6hHqUlyDevspe-5WoQTGitByQlySFxnNmRsD2lydYdUyLeDmMmjNrU62-w_r3YOdEnJ6rUJH9mHNjA9ge4mI8BB80vaKqkzl9VyKXhNv3UnBLfuJDrmH0NYbvExmjkh3egTD7H541_HLRgq-Qgc09YVr2idJYEhiEAEKy6w1JqbChsaERAq08RqdMde6ymgRmSCVghFpY6KYScNjqI0nY3MCHtPokOgwtkzHkRKhZIqEMrEOKEqcswH-XIZclSTjrtfFGy_okSl3UuCVFBpwU41_L-g1fhx5Pt8SXh6zKafobrEYIVrSAJoL_5dZeKud9aqv07_8dAWbnWGvy7sP_ccz2KIuxyXP4j6HGm6LuYAN9TV7nX5clpr4DcIr3gc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60FdGDb7E-9yB4WtpkH3GPxXVRbEuRCr2FPFGQttjq73eyu922BxHE40I2hMlM8k1m5huAaxYkysQt7RuCGhziWn0plfI11VoIFmsqRN5sgvV6t8Nh0i-zCV0tTMEPUT24OcvIz2tn4GaibXPBGiq0daXkLoCPMH8d6mGUxGib9fQ5e-lUoQTGitByTFySFxnOmRtbtLk6w-rNtICby6A1v3Wy3X9Y7x7slJDTaxc6sg9rZnQA20tEhIfgk9QrqjKV13Upek08dccFt-wnOuQeQluv_zqeOSLd6REMsvvB3YNfNlLwFTqgiS9c0z5JWobEBhGgsMxaYyIqbGBMQKTAO16jM-ZaVxktQtNKpGBE2ogoZpLgGGqj8cicgMc0OiQ6iCzTUahEIJkigYytA4oS52yAP5chVyXJuOt18c4LemTKnRR4JYUG3FTjJwW9xo8jz-dbwkszm3KK7haLEKLFDaC58H-ZhbfTrFt9nf7lpyvY7KcZ7zz2ns5gi7oUlzyJ-xxquCvmAjbU1-xt-nFZKuI3fc_dgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+Organic+Micro%2FNanostructures+for+Photonics&rft.jtitle=Advanced+functional+materials&rft.au=Ying%E2%80%90Li+Shi&rft.au=Xue%E2%80%90Dong+Wang&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.202008149&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon