1D Organic Micro/Nanostructures for Photonics
1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optica...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 31; číslo 7 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.02.2021
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optical confinement, and so forth. These inherent characteristics of OMNSs make them have broad application prospects in photonics devices, such as nanolasers, optical waveguides, and optical logical gates. In this review, the recent processes of OMNSs in terms of light generation, light confinement, and propagation are introduced, separately. Some representative works of OMNSs are discussed in the direction of optical modulation and processing. However, huge challenges still remain before the OMNSs are actually used as components of optical circuits in the photonics chips. The summary and the expectations are presented for the future development of 1D organic micro/nanostructures photonics.
1D organic micro/nanostructures have great potential in nanoscale integrated optical circuits as photonic components due to their intrinsic capabilities to generate and confine optical signals efficiently. Herein, the recent advances of 1D micro/nanostructures in photonic applications are reviewed. Then, the prospects and suggestions for future development are presented. |
|---|---|
| AbstractList | 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optical confinement, and so forth. These inherent characteristics of OMNSs make them have broad application prospects in photonics devices, such as nanolasers, optical waveguides, and optical logical gates. In this review, the recent processes of OMNSs in terms of light generation, light confinement, and propagation are introduced, separately. Some representative works of OMNSs are discussed in the direction of optical modulation and processing. However, huge challenges still remain before the OMNSs are actually used as components of optical circuits in the photonics chips. The summary and the expectations are presented for the future development of 1D organic micro/nanostructures photonics. 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique photophysical advantages over traditional ones in low‐temperature solution‐processed approach, tunable emission color, the built‐in cavity for optical confinement, and so forth. These inherent characteristics of OMNSs make them have broad application prospects in photonics devices, such as nanolasers, optical waveguides, and optical logical gates. In this review, the recent processes of OMNSs in terms of light generation, light confinement, and propagation are introduced, separately. Some representative works of OMNSs are discussed in the direction of optical modulation and processing. However, huge challenges still remain before the OMNSs are actually used as components of optical circuits in the photonics chips. The summary and the expectations are presented for the future development of 1D organic micro/nanostructures photonics. 1D organic micro/nanostructures have great potential in nanoscale integrated optical circuits as photonic components due to their intrinsic capabilities to generate and confine optical signals efficiently. Herein, the recent advances of 1D micro/nanostructures in photonic applications are reviewed. Then, the prospects and suggestions for future development are presented. |
| Author | Wang, Xue‐Dong Shi, Ying‐Li |
| Author_xml | – sequence: 1 givenname: Ying‐Li orcidid: 0000-0002-1976-5113 surname: Shi fullname: Shi, Ying‐Li organization: The University of Hong Kong – sequence: 2 givenname: Xue‐Dong orcidid: 0000-0003-0935-0835 surname: Wang fullname: Wang, Xue‐Dong email: wangxuedong@suda.edu.cn organization: Soochow University |
| BookMark | eNqFkMFPwjAUhxuDiYBePS_xPOhru249EhA1AfHAwVvTjVcdgRXbLYb_3pEZTEyMp_cOv-_9Xr4B6VWuQkJugY6AUjY2G7sfMcoozUCoC9IHCTLmlGW98w6vV2QQwpZSSFMu-iSGWbTyb6Yqi2hZFt6Nn03lQu2bom48hsg6H728u9q1iXBNLq3ZBbz5nkOynt-vp4_xYvXwNJ0s4oJnXMWGSyVzoAgSARJjU2sRE2YsR-SQGybEhjIpmGK4MQKpyk0KuU2gSFHxIbnrzh68-2gw1HrrGl-1jZqJLE0TloBsU6Mu1X4dgkerD77cG3_UQPXJiD4Z0WcjLSB-AUVZm7p0Ve1NufsbUx32We7w-E-Jnszmyx_2CzswduQ |
| CitedBy_id | crossref_primary_10_1002_smll_202203961 crossref_primary_10_1002_anie_202311348 crossref_primary_10_1002_cjoc_202200313 crossref_primary_10_1002_pssa_202300243 crossref_primary_10_1039_D5NH00228A crossref_primary_10_1039_D5TC01924A crossref_primary_10_1007_s11426_024_2126_0 crossref_primary_10_1016_j_matt_2022_08_001 crossref_primary_10_3390_molecules28124631 crossref_primary_10_1039_D3QM00461A crossref_primary_10_1016_j_dyepig_2023_111899 crossref_primary_10_1039_D5TC01067E crossref_primary_10_1007_s40843_023_2561_8 crossref_primary_10_1002_adma_202504256 crossref_primary_10_1007_s11426_022_1375_y crossref_primary_10_3390_molecules26040958 crossref_primary_10_31857_S0514749223120030 crossref_primary_10_1021_acsami_5c09721 crossref_primary_10_1016_j_nanoen_2021_106673 crossref_primary_10_1007_s40820_022_00988_1 crossref_primary_10_1007_s40843_022_2210_9 crossref_primary_10_1016_j_orgel_2022_106431 crossref_primary_10_1002_adfm_202105506 crossref_primary_10_1002_adom_202201000 crossref_primary_10_1002_aelm_202200753 crossref_primary_10_1002_ange_202311348 crossref_primary_10_1016_j_dyepig_2024_112593 crossref_primary_10_1134_S1070428023120035 crossref_primary_10_1002_adom_202202895 crossref_primary_10_1002_adom_202002264 crossref_primary_10_1016_j_jlumin_2022_118950 crossref_primary_10_35848_1347_4065_acbf8f crossref_primary_10_1016_j_dyepig_2022_110428 crossref_primary_10_1016_j_dyepig_2025_112949 crossref_primary_10_1002_adfm_202113025 crossref_primary_10_1002_adsr_202300169 crossref_primary_10_1007_s12274_021_3944_4 crossref_primary_10_1016_j_dyepig_2022_110572 crossref_primary_10_1021_acs_jpcc_4c07937 crossref_primary_10_1016_j_optmat_2024_116614 crossref_primary_10_1007_s40843_024_3140_4 crossref_primary_10_3390_nano14100822 |
| Cites_doi | 10.1021/jp071455e 10.1002/adfm.201102284 10.1016/j.physe.2007.10.009 10.1126/sciadv.1700688 10.1002/adma.201000731 10.1038/nphoton.2007.277 10.1088/0953-8984/6/28/012 10.1038/nnano.2007.50 10.1002/adma.201908388 10.1002/adfm.201202108 10.1021/acs.jpcc.5b10125 10.1557/jmr.2010.7 10.1039/C7NR08931G 10.1021/nn204848r 10.1016/j.cplett.2007.12.045 10.1002/adfm.201102173 10.1021/acsphotonics.7b00423 10.1002/adma.201506062 10.1002/adma.201100827 10.1002/anie.201502684 10.1021/jp072488x 10.1021/jacs.7b01574 10.1039/C3TC32474E 10.1002/adma.200902024 10.1002/adma.201603652 10.1038/nature01289 10.1002/anie.201302894 10.1021/ja077600j 10.1016/j.matt.2020.01.023 10.1038/s41467-020-18144-x 10.1021/nl0610477 10.1021/cm060102 10.1021/jacs.8b04699 10.1016/j.orgel.2012.01.021 10.1038/s41467-019-11731-7 10.1039/c0jm04437g 10.1002/smll.201001217 10.1002/lpor.201300222 10.1002/adma.201503019 10.1038/nmat1564 10.1021/acsphotonics.9b00606 10.1002/adma.201201579 10.1126/sciadv.1700225 10.1021/nl034217d 10.1002/smll.201401487 10.1021/am4011379 10.1021/acs.nanolett.6b00526 10.1002/anie.201810514 10.1002/anie.201501060 10.1021/cm100798q 10.1002/adma.201003829 10.1039/C4CS00116H 10.3390/nano7110381 10.1038/ncomms7737 10.1021/jacs.5b11525 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G 10.1021/acs.accounts.6b00209 10.1021/ja806162h 10.1021/nl050469y 10.1002/adom.202000959 10.1002/ange.201106652 10.1021/jacs.9b07645 10.1002/adma.201505594 10.1038/nnano.2007.35 10.1063/1.3610677 10.1021/acsnano.7b04584 10.1002/anie.202002627 10.1063/1.2115087 10.1002/pssa.2210130237 10.1021/nn901567z 10.1002/adma.201103032 10.1103/PhysRevB.49.14643 10.1002/adma.200700542 10.1021/ja200549v 10.1039/c3cp54994a 10.1002/advs.201500130 10.1016/j.nantod.2019.02.010 10.1021/nl901314u 10.1002/adma.201104373 10.1021/ja809360v 10.1103/PhysRevB.75.073308 10.1021/ja0642109 10.1002/anie.201700447 10.1038/s41467-017-00038-0 10.1039/c3tc30143e 10.1021/ic0601384 10.1002/anie.202003820 10.1021/ja410069k 10.1002/anie.202002492 10.1002/adfm.201703470 10.1021/acs.nanolett.9b02943 10.1021/acs.jpcc.5b06063 10.1038/srep00393 10.1021/jacs.0c00135 10.1021/nl052471v 10.1038/nature01937 10.1002/adma.201300325 10.1021/acs.chemrev.9b00240 10.1021/ar500192v 10.1038/nmat4271 10.1021/acsami.7b13063 10.1002/adma.201502577 10.1021/nl100010v 10.1007/s40843-019-1216-5 10.1039/C7TC04621A 10.1002/adom.201901643 10.1002/adma.201100353 10.1039/c3tc32206h 10.1002/adom.201801775 10.1038/nphoton.2011.52 10.1002/adfm.201902981 10.1021/ja9084435 10.1002/anie.201912236 10.1126/sciadv.aap9861 10.1002/adma.201203829 10.1002/adma.201800814 10.1039/c3nr06760b 10.1002/adma.200800123 10.1103/PhysRevLett.120.257401 10.1021/nl902860d 10.1021/acsami.8b22317 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202008149 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202008149 ADFM202008149 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20170330 – fundername: National Natural Science Foundation of China funderid: 21703148; 21971185 – fundername: State Administration of Foreign Experts Affairs – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: 111 Project – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3839-a3696b10e16e115af7ffee52af3ee31ba244d0264292eda4e09ba71bf51c7e93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Fri Jul 25 05:54:13 EDT 2025 Tue Nov 18 21:58:20 EST 2025 Sat Nov 29 07:24:06 EST 2025 Wed Jan 22 16:31:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3839-a3696b10e16e115af7ffee52af3ee31ba244d0264292eda4e09ba71bf51c7e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1976-5113 0000-0003-0935-0835 |
| PQID | 2487752516 |
| PQPubID | 2045204 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2487752516 crossref_primary_10_1002_adfm_202008149 crossref_citationtrail_10_1002_adfm_202008149 wiley_primary_10_1002_adfm_202008149_ADFM202008149 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 10 2013; 1 2012; 124 1960; 3 2019; 11 2019; 10 2002; 12 2019; 19 2020; 11 2007; 75 2012; 13 2013; 5 2014; 136 2018; 48 2010; 22 2018; 4 2019; 25 2013; 52 2014; 16 2019; 29 2018; 30 2007; 2 2008; 20 2012; 24 2016; 49 2012; 22 2010; 4 2005; 5840 2019; 7 2019; 6 2020; 142 2011; 82 2015; 54 2014; 47 2005; 87 2020; 32 2016; 16 2011; 5 2011; 7 2011; 133 2017; 139 2006; 45 2017; 56 2005; 5 2015; 119 2008; 40 2016; 28 2018; 10 2008; 130 2018; 120 2017; 5 2017; 7 2017; 8 2013; 25 2017; 3 2017; 4 2020; 63 2013; 23 2019; 58 2020; 59 2008; 2 2017; 9 2020; 8 2020; 2 2014; 2 2015; 44 2003; 3 2011; 21 2019; 119 2011; 23 2011; 26 2014; 8 1972; 13 2014; 6 2015; 2 2015; 14 2007; 129 2015; 6 2018; 140 2017; 27 2015; 11 2006; 5 2006; 18 2006; 6 1994; 49 2017; 29 2009; 131 2019; 141 2016; 120 2012; 2 2015; 27 2003; 424 2020 2017; 11 2007; 111 2010; 132 2009; 9 2016; 138 2012; 6 2008; 452 2003; 421 1994; 6 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 Shpol'skiIĭ É. V. (e_1_2_9_72_1) 1960; 3 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 Torii K. (e_1_2_9_31_1) 2017; 3 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 Zhao J. (e_1_2_9_27_1) 2018; 48 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 Zhuo M. P. (e_1_2_9_54_1) 2020; 2 e_1_2_9_28_1 e_1_2_9_47_1 Badenes G. (e_1_2_9_73_1) 2005; 5840 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 131 start-page: 3950 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1822 year: 2006 publication-title: Nano Lett. – volume: 28 start-page: 3209 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 2036 year: 2017 publication-title: ACS Photonics – volume: 6 start-page: 5373 year: 1994 publication-title: J. Phys.: Condens. Matter – volume: 2 start-page: 2827 year: 2014 publication-title: J. Mater. Chem. C – volume: 421 start-page: 238 year: 2003 publication-title: Nature – volume: 1 start-page: 3633 year: 2013 publication-title: J. Mater. Chem. C – volume: 16 start-page: 4754 year: 2016 publication-title: Nano Lett. – volume: 40 start-page: 2468 year: 2008 publication-title: Phys. E – volume: 11 start-page: 4485 year: 2020 publication-title: Nat. Commun. – volume: 424 start-page: 824 year: 2003 publication-title: Nature – volume: 133 start-page: 7276 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 452 start-page: 168 year: 2008 publication-title: Chem. Phys. Lett. – volume: 56 start-page: 3616 year: 2017 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 10 start-page: 5140 year: 2018 publication-title: Nanoscale – volume: 10 start-page: 3839 year: 2019 publication-title: Nat. Commun. – volume: 136 start-page: 2382 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2302 year: 2006 publication-title: Chem. Mater. – volume: 2 start-page: 180 year: 2007 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 625 year: 2017 publication-title: Chem. Nanomater. – volume: 3 start-page: 919 year: 2003 publication-title: Nano Lett. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 22 start-page: 3661 year: 2010 publication-title: Adv. Mater. – volume: 13 start-page: 815 year: 2012 publication-title: Org. Electron. – volume: 8 start-page: 687 year: 2014 publication-title: Laser Photonics Rev. – volume: 11 start-page: 5298 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 1319 year: 2016 publication-title: Adv. Mater. – volume: 47 start-page: 3448 year: 2014 publication-title: Acc. Chem. Res. – volume: 5 start-page: 1293 year: 2005 publication-title: Nano Lett. – volume: 5840 start-page: 584 year: 2005 publication-title: SPIE – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 8713 year: 2013 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 2 start-page: 141 year: 2007 publication-title: Nat. Nanotechnol. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 9 start-page: 2935 year: 2009 publication-title: Nano Lett. – volume: 13 start-page: 651 year: 1972 publication-title: Phys. Status Solidi A – volume: 131 start-page: 3158 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1630 year: 2010 publication-title: ACS Nano – volume: 139 start-page: 6376 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 82 year: 2011 publication-title: Rev. Sci. Instrum. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 start-page: 381 year: 2017 publication-title: Nanomaterials – volume: 16 start-page: 7173 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 413 year: 2020 publication-title: CCS Chem. – volume: 129 start-page: 3527 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 86 year: 2008 publication-title: Nat. Photonics – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 161 year: 2015 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 3627 year: 2013 publication-title: Adv. Mater. – volume: 19 start-page: 7877 year: 2019 publication-title: Nano Lett. – volume: 20 start-page: 1661 year: 2008 publication-title: Adv. Mater. – volume: 120 start-page: 1186 year: 2016 publication-title: J. Phys. Chem. C – volume: 7 start-page: 189 year: 2011 publication-title: Small – volume: 28 start-page: 2874 year: 2016 publication-title: Adv. Mater. – volume: 142 start-page: 7265 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 323 year: 2002 publication-title: Adv. Funct. Mater. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 25 start-page: 13 year: 2019 publication-title: Nano Today – volume: 24 start-page: 216 year: 2012 publication-title: Adv. Mater. – volume: 2 start-page: 1233 year: 2020 publication-title: Matter – volume: 111 start-page: 8671 year: 2007 publication-title: J. Phys. Chem. C – volume: 138 start-page: 1118 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 9177 year: 2007 publication-title: J. Phys. Chem. C – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – year: 2020 publication-title: Adv. Opt. Mater. – volume: 8 start-page: 20 year: 2017 publication-title: Nat. Commun. – volume: 54 start-page: 7125 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 22 start-page: 1330 year: 2012 publication-title: Adv. Funct. Mater. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 23 start-page: 839 year: 2013 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 636 year: 2015 publication-title: Nat. Mater. – volume: 6 start-page: 1888 year: 2012 publication-title: ACS Nano – volume: 22 start-page: 3735 year: 2010 publication-title: Chem. Mater. – volume: 25 start-page: 2784 year: 2013 publication-title: Adv. Mater. – volume: 119 start-page: 9153 year: 2019 publication-title: Chem. Rev. – volume: 21 start-page: 4837 year: 2011 publication-title: J. Mater. Chem. – volume: 27 start-page: 7305 year: 2015 publication-title: Adv. Mater. – volume: 63 start-page: 1464 year: 2020 publication-title: Sci. China Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 9 start-page: 4515 year: 2009 publication-title: Nano Lett. – volume: 130 start-page: 3937 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 1691 year: 2016 publication-title: Acc. Chem. Res. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 48 start-page: 127 year: 2018 publication-title: Sci. China:Chem. – volume: 23 start-page: 3659 year: 2011 publication-title: Adv. Mater. – volume: 2 start-page: 2773 year: 2014 publication-title: J. Mater. Chem. C – volume: 23 start-page: 1380 year: 2011 publication-title: Adv. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 22 start-page: 1223 year: 2010 publication-title: Adv. Mater. – volume: 45 start-page: 7555 year: 2006 publication-title: Inorg. Chem. – volume: 2 start-page: 393 year: 2012 publication-title: Sci. Rep. – volume: 6 start-page: 4174 year: 2014 publication-title: Nanoscale – volume: 132 start-page: 1742 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 1117 year: 2012 publication-title: Adv. Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 24 start-page: 497 year: 2012 publication-title: Adv. Mater. – volume: 11 start-page: 45 year: 2015 publication-title: Small – volume: 6 start-page: 1928 year: 2006 publication-title: Nano Lett. – volume: 54 start-page: 7037 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 5 start-page: 6182 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 6737 year: 2015 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 49 year: 1994 publication-title: Phys. Rev. B – volume: 124 start-page: 3616 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 1005 year: 2012 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 311 year: 2011 publication-title: J. Mater. Res. Technol. – volume: 5 start-page: 102 year: 2006 publication-title: Nat. Mater. – volume: 3 start-page: 372 year: 1960 publication-title: Phys.‐Usp. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 301 year: 2011 publication-title: Nat. Photonics – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1374 year: 2010 publication-title: Nano Lett. – volume: 23 start-page: 2796 year: 2011 publication-title: Adv. Mater. – volume: 6 start-page: 1798 year: 2019 publication-title: ACS Photonics – volume: 20 start-page: 79 year: 2008 publication-title: Adv. Mater. – ident: e_1_2_9_102_1 doi: 10.1021/jp071455e – ident: e_1_2_9_87_1 doi: 10.1002/adfm.201102284 – ident: e_1_2_9_37_1 doi: 10.1016/j.physe.2007.10.009 – ident: e_1_2_9_126_1 doi: 10.1126/sciadv.1700688 – ident: e_1_2_9_93_1 doi: 10.1002/adma.201000731 – ident: e_1_2_9_10_1 doi: 10.1038/nphoton.2007.277 – ident: e_1_2_9_76_1 doi: 10.1088/0953-8984/6/28/012 – ident: e_1_2_9_26_1 doi: 10.1038/nnano.2007.50 – ident: e_1_2_9_88_1 doi: 10.1002/adma.201908388 – ident: e_1_2_9_96_1 doi: 10.1002/adfm.201202108 – ident: e_1_2_9_97_1 doi: 10.1021/acs.jpcc.5b10125 – ident: e_1_2_9_90_1 doi: 10.1557/jmr.2010.7 – ident: e_1_2_9_57_1 doi: 10.1039/C7NR08931G – ident: e_1_2_9_8_1 doi: 10.1021/nn204848r – ident: e_1_2_9_101_1 doi: 10.1016/j.cplett.2007.12.045 – ident: e_1_2_9_32_1 doi: 10.1002/adfm.201102173 – ident: e_1_2_9_16_1 doi: 10.1021/acsphotonics.7b00423 – ident: e_1_2_9_82_1 doi: 10.1002/adma.201506062 – ident: e_1_2_9_98_1 doi: 10.1002/adma.201100827 – ident: e_1_2_9_28_1 doi: 10.1002/anie.201502684 – ident: e_1_2_9_56_1 doi: 10.1021/jp072488x – ident: e_1_2_9_71_1 doi: 10.1021/jacs.7b01574 – ident: e_1_2_9_6_1 doi: 10.1039/C3TC32474E – ident: e_1_2_9_124_1 doi: 10.1002/adma.200902024 – ident: e_1_2_9_58_1 doi: 10.1002/adma.201603652 – ident: e_1_2_9_60_1 doi: 10.1038/nature01289 – ident: e_1_2_9_118_1 doi: 10.1002/anie.201302894 – ident: e_1_2_9_18_1 doi: 10.1021/ja077600j – ident: e_1_2_9_29_1 doi: 10.1016/j.matt.2020.01.023 – ident: e_1_2_9_62_1 doi: 10.1038/s41467-020-18144-x – ident: e_1_2_9_123_1 doi: 10.1021/nl0610477 – ident: e_1_2_9_67_1 doi: 10.1021/cm060102 – ident: e_1_2_9_116_1 doi: 10.1021/jacs.8b04699 – ident: e_1_2_9_84_1 doi: 10.1016/j.orgel.2012.01.021 – ident: e_1_2_9_43_1 doi: 10.1038/s41467-019-11731-7 – ident: e_1_2_9_33_1 doi: 10.1039/c0jm04437g – ident: e_1_2_9_20_1 doi: 10.1002/smll.201001217 – ident: e_1_2_9_1_1 doi: 10.1002/lpor.201300222 – ident: e_1_2_9_89_1 doi: 10.1002/adma.201503019 – ident: e_1_2_9_15_1 doi: 10.1038/nmat1564 – ident: e_1_2_9_53_1 doi: 10.1021/acsphotonics.9b00606 – ident: e_1_2_9_59_1 doi: 10.1002/adma.201201579 – ident: e_1_2_9_117_1 doi: 10.1126/sciadv.1700225 – ident: e_1_2_9_11_1 doi: 10.1021/nl034217d – ident: e_1_2_9_4_1 doi: 10.1002/smll.201401487 – ident: e_1_2_9_100_1 doi: 10.1021/am4011379 – ident: e_1_2_9_65_1 doi: 10.1021/acs.nanolett.6b00526 – ident: e_1_2_9_108_1 doi: 10.1002/anie.201810514 – ident: e_1_2_9_81_1 doi: 10.1002/anie.201501060 – ident: e_1_2_9_41_1 doi: 10.1021/cm100798q – volume: 3 start-page: 625 year: 2017 ident: e_1_2_9_31_1 publication-title: Chem. Nanomater. – ident: e_1_2_9_42_1 doi: 10.1002/adma.201003829 – ident: e_1_2_9_7_1 doi: 10.1039/C4CS00116H – ident: e_1_2_9_9_1 doi: 10.3390/nano7110381 – ident: e_1_2_9_95_1 doi: 10.1038/ncomms7737 – ident: e_1_2_9_36_1 doi: 10.1021/jacs.5b11525 – ident: e_1_2_9_14_1 doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G – ident: e_1_2_9_22_1 doi: 10.1021/acs.accounts.6b00209 – ident: e_1_2_9_19_1 doi: 10.1021/ja806162h – volume: 5840 start-page: 584 year: 2005 ident: e_1_2_9_73_1 publication-title: SPIE – ident: e_1_2_9_44_1 doi: 10.1021/nl050469y – ident: e_1_2_9_92_1 doi: 10.1002/adom.202000959 – ident: e_1_2_9_39_1 doi: 10.1002/ange.201106652 – ident: e_1_2_9_107_1 doi: 10.1021/jacs.9b07645 – ident: e_1_2_9_69_1 doi: 10.1002/adma.201505594 – ident: e_1_2_9_70_1 doi: 10.1038/nnano.2007.35 – ident: e_1_2_9_74_1 doi: 10.1063/1.3610677 – ident: e_1_2_9_49_1 doi: 10.1021/acsnano.7b04584 – ident: e_1_2_9_109_1 doi: 10.1002/anie.202002627 – ident: e_1_2_9_77_1 doi: 10.1063/1.2115087 – ident: e_1_2_9_24_1 doi: 10.1002/pssa.2210130237 – ident: e_1_2_9_63_1 doi: 10.1021/nn901567z – ident: e_1_2_9_83_1 doi: 10.1002/adma.201103032 – ident: e_1_2_9_110_1 doi: 10.1103/PhysRevB.49.14643 – ident: e_1_2_9_35_1 doi: 10.1002/adma.200700542 – volume: 2 start-page: 413 year: 2020 ident: e_1_2_9_54_1 publication-title: CCS Chem. – volume: 48 start-page: 127 year: 2018 ident: e_1_2_9_27_1 publication-title: Sci. China:Chem. – ident: e_1_2_9_34_1 doi: 10.1021/ja200549v – ident: e_1_2_9_40_1 doi: 10.1039/c3cp54994a – ident: e_1_2_9_119_1 doi: 10.1002/advs.201500130 – ident: e_1_2_9_68_1 doi: 10.1016/j.nantod.2019.02.010 – ident: e_1_2_9_125_1 doi: 10.1021/nl901314u – ident: e_1_2_9_86_1 doi: 10.1002/adma.201104373 – ident: e_1_2_9_64_1 doi: 10.1021/ja809360v – ident: e_1_2_9_79_1 doi: 10.1103/PhysRevB.75.073308 – ident: e_1_2_9_21_1 doi: 10.1021/ja0642109 – ident: e_1_2_9_115_1 doi: 10.1002/anie.201700447 – ident: e_1_2_9_120_1 doi: 10.1038/s41467-017-00038-0 – ident: e_1_2_9_2_1 doi: 10.1039/c3tc30143e – ident: e_1_2_9_12_1 doi: 10.1021/ic0601384 – ident: e_1_2_9_106_1 doi: 10.1002/anie.202003820 – ident: e_1_2_9_50_1 doi: 10.1021/ja410069k – ident: e_1_2_9_104_1 doi: 10.1002/anie.202002492 – ident: e_1_2_9_30_1 doi: 10.1002/adfm.201703470 – ident: e_1_2_9_80_1 doi: 10.1021/acs.nanolett.9b02943 – ident: e_1_2_9_55_1 doi: 10.1021/acs.jpcc.5b06063 – ident: e_1_2_9_85_1 doi: 10.1038/srep00393 – ident: e_1_2_9_66_1 doi: 10.1021/jacs.0c00135 – ident: e_1_2_9_122_1 doi: 10.1021/nl052471v – ident: e_1_2_9_121_1 doi: 10.1038/nature01937 – ident: e_1_2_9_23_1 doi: 10.1002/adma.201300325 – ident: e_1_2_9_3_1 doi: 10.1021/acs.chemrev.9b00240 – ident: e_1_2_9_51_1 doi: 10.1021/ar500192v – ident: e_1_2_9_5_1 doi: 10.1038/nmat4271 – ident: e_1_2_9_17_1 doi: 10.1021/acsami.7b13063 – ident: e_1_2_9_46_1 doi: 10.1002/adma.201502577 – volume: 3 start-page: 372 year: 1960 ident: e_1_2_9_72_1 publication-title: Phys.‐Usp. – ident: e_1_2_9_111_1 doi: 10.1021/nl100010v – ident: e_1_2_9_48_1 doi: 10.1007/s40843-019-1216-5 – ident: e_1_2_9_112_1 doi: 10.1039/C7TC04621A – ident: e_1_2_9_38_1 doi: 10.1002/adom.201901643 – ident: e_1_2_9_45_1 doi: 10.1002/adma.201100353 – ident: e_1_2_9_61_1 doi: 10.1039/c3tc32206h – ident: e_1_2_9_113_1 doi: 10.1002/adom.201801775 – ident: e_1_2_9_75_1 doi: 10.1038/nphoton.2011.52 – ident: e_1_2_9_25_1 doi: 10.1002/adfm.201902981 – ident: e_1_2_9_114_1 doi: 10.1021/ja9084435 – ident: e_1_2_9_103_1 doi: 10.1002/anie.201912236 – ident: e_1_2_9_91_1 doi: 10.1126/sciadv.aap9861 – ident: e_1_2_9_47_1 doi: 10.1002/adma.201203829 – ident: e_1_2_9_105_1 doi: 10.1002/adma.201800814 – ident: e_1_2_9_99_1 doi: 10.1039/c3nr06760b – ident: e_1_2_9_13_1 doi: 10.1002/adma.200800123 – ident: e_1_2_9_78_1 doi: 10.1103/PhysRevLett.120.257401 – ident: e_1_2_9_127_1 doi: 10.1021/nl902860d – ident: e_1_2_9_94_1 doi: 10.1021/nn901567z – ident: e_1_2_9_52_1 doi: 10.1021/acsami.8b22317 |
| SSID | ssj0017734 |
| Score | 2.5572186 |
| SecondaryResourceType | review_article |
| Snippet | 1D organic micro/nanostructures (OMNSs) based on π‐conjugated molecules are considered to be suitable candidates as photonic units due to their unique... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Confinement Logic circuits Materials science nanoscale light source Nanostructure optical processing optical transmission Optical waveguides organic micro/nanostructures organic semiconductor molecules Photonics |
| Title | 1D Organic Micro/Nanostructures for Photonics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202008149 https://www.proquest.com/docview/2487752516 |
| Volume | 31 |
| WOSCitedRecordID | wos000587354500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9kYPgaWk2j033WKzFQ1uKVOgt7G5mUZBWTPX3O5ukaXsQQY-BzRBmH_N92ZlvAG6JNIisE0uGyrcsEiZiyqiIWQo-BqXIuC66lgyS0agzncrxWhV_qQ9R_3BzO6M4r90GVzpvr0RDVWZdJbm7vyeUvw3NgBZv1IBm76n_PKhvEpKkvFkW3OV48elSuNEP2psWNgPTCm2uY9Yi6PQP_v-5h7BfAU6vW66QI9jC2THsrckQngDjPa-syTTe0CXotenMnZfKsp9Exz0Ctt74Zb5wMrr5KUz6D5P7R1a1UWCG6KdkyrXs09xHLpDwn7KJtYhxoGyIGHKtKMJnRMVc4yrMVIS-1Crh2sbcJCjDM2jM5jM8B0_4oSYCRxZCGSnhy1DFWkmiPNoP0ZoWsKULU1NJjLtOF29pKY4cpM4Lae2FFtzV499LcY0fR14tZyStNlmeBkS2kpgAmmhBUPj-Fytpt9cf1k8Xf3npEnYDl9VS5G1fQYOmAq9hx3wtXvOPm2rxfQPem9h0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH7oJqgHf4vTqT0InsKa_kiX43CWid0YMmG3kKYJCrKJm_79vrRdtx1EEI-FNISXl7zvS16-B3CDpIFl7ZATLV1DAqYCIpUMiMHgozRnGU3zqiVJNBi0x2M-LLMJ7VuYQh-iOnCzKyPfr-0CtwfSraVqqMyMfUpuL_AR5m9CPUBfCmtQ7z7Fz0l1lRBFxdUyozbJi44Xyo2u11rvYT0yLeHmKmjNo068_w_jPYC9EnI6ncJHDmFDT45gd0WI8BgI7TrFq0zl9G2KXgt33WmhLfuJhNxBaOsMX6ZzK6Q7O4FRfD-665GykAJRSEA5kbZoX0pdTZlGBChNZIzWoSeNr7VPU4kxPkMyZktX6UwG2uWpjGhqQqoizf1TqE2mE30GDnP9FCkc9uDzQDKX-zJMJUfSk7q-NqoBZGFDoUqRcVvr4k0U8siesFYQlRUacFu1fy_kNX5s2VxMiSiX2Ux4SLeiECEaa4CXG_-XXkSnG_err_O__HQN271RPxHJw-DxAnY8m-OSZ3E3oYbToi9hS33NX2cfV6UnfgPtOdxk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwED50E9EHf4vTqX0QfApr-iNdHoe1KG5jyIS9hTRNUJBtuOnf76Xtuu1BBPGxkB7lkst9X3P5DuAGSQPL2iEnWrqGBEwFRCoZEIPJR2nOMprmXUu6Ub_fHo34oKwmtHdhCn2I6oebjYx8v7YBrqeZaS1VQ2Vm7FVye4CPMH8T6kHIGcZmPX5OXrrVUUIUFUfLjNoiLzpaKDe6XmvdwnpmWsLNVdCaZ51k_x--9wD2SsjpdIo1cggbenwEuytChMdAaOwUtzKV07Mlei3cdSeFtuwnEnIHoa0zeJ3MrZDu7ASGyf3w7oGUjRSIQgLKibRN-1Lqaso0IkBpImO0Dj1pfK19mkrM8RmSMdu6Smcy0C5PZURTE1IVae6fQm08GeszcJjrp0jh0ILPA8lc7sswlRxJT-r62qgGkIUPhSpFxm2vi3dRyCN7wnpBVF5owG01flrIa_w4srmYElGG2Ux4SLeiECEaa4CXO_8XK6ITJ73q6fwvL13D9iBORPex_3QBO54tccmLuJtQw1nRl7ClvuZvs4-rciF-A6qA298 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+Organic+Micro%2FNanostructures+for+Photonics&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Ying%E2%80%90Li&rft.au=Wang%2C+Xue%E2%80%90Dong&rft.date=2021-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202008149&rft.externalDBID=10.1002%252Fadfm.202008149&rft.externalDocID=ADFM202008149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |