A derivative-free descent method in set optimization

Based on a vectorization result in set optimization with respect to the set less order relation, this paper shows how to relate two nonempty sets on a computer. This result is developed for generalized convex sets and polyhedral sets in finite dimensional spaces. Using this approach a numerical meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 60; H. 2; S. 393 - 411
1. Verfasser: Jahn, Johannes
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.03.2015
Springer Nature B.V
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on a vectorization result in set optimization with respect to the set less order relation, this paper shows how to relate two nonempty sets on a computer. This result is developed for generalized convex sets and polyhedral sets in finite dimensional spaces. Using this approach a numerical method for the determination of optimal scenarios is presented. A new derivative-free descent method for the solution of set optimization problems is given together with numerical results in low dimensions.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-014-9674-8