A derivative-free descent method in set optimization
Based on a vectorization result in set optimization with respect to the set less order relation, this paper shows how to relate two nonempty sets on a computer. This result is developed for generalized convex sets and polyhedral sets in finite dimensional spaces. Using this approach a numerical meth...
Gespeichert in:
| Veröffentlicht in: | Computational optimization and applications Jg. 60; H. 2; S. 393 - 411 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.03.2015
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Based on a vectorization result in set optimization with respect to the set less order relation, this paper shows how to relate two nonempty sets on a computer. This result is developed for generalized convex sets and polyhedral sets in finite dimensional spaces. Using this approach a numerical method for the determination of optimal scenarios is presented. A new derivative-free descent method for the solution of set optimization problems is given together with numerical results in low dimensions. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-014-9674-8 |