Sublinear time algorithms for approximate semidefinite programming

We consider semidefinite optimization in a saddle point formulation where the primal solution is in the spectrahedron and the dual solution is a distribution over affine functions. We present an approximation algorithm for this problem that runs in sublinear time in the size of the data. To the best...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 158; číslo 1-2; s. 329 - 361
Hlavní autoři: Garber, Dan, Hazan, Elad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2016
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider semidefinite optimization in a saddle point formulation where the primal solution is in the spectrahedron and the dual solution is a distribution over affine functions. We present an approximation algorithm for this problem that runs in sublinear time in the size of the data. To the best of our knowledge, this is the first algorithm to achieve this. Our algorithm is also guaranteed to produce low-rank solutions. We further prove lower bounds on the running time of any algorithm for this problem, showing that certain terms in the running time of our algorithm cannot be further improved. Finally, we consider a non-affine version of the saddle point problem and give an algorithm that under certain assumptions runs in sublinear time.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-015-0932-z