Sublinear time algorithms for approximate semidefinite programming

We consider semidefinite optimization in a saddle point formulation where the primal solution is in the spectrahedron and the dual solution is a distribution over affine functions. We present an approximation algorithm for this problem that runs in sublinear time in the size of the data. To the best...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 158; H. 1-2; S. 329 - 361
Hauptverfasser: Garber, Dan, Hazan, Elad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2016
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider semidefinite optimization in a saddle point formulation where the primal solution is in the spectrahedron and the dual solution is a distribution over affine functions. We present an approximation algorithm for this problem that runs in sublinear time in the size of the data. To the best of our knowledge, this is the first algorithm to achieve this. Our algorithm is also guaranteed to produce low-rank solutions. We further prove lower bounds on the running time of any algorithm for this problem, showing that certain terms in the running time of our algorithm cannot be further improved. Finally, we consider a non-affine version of the saddle point problem and give an algorithm that under certain assumptions runs in sublinear time.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-015-0932-z