Detection of Moving Objects Using Multi-channel Kernel Fuzzy Correlogram Based Background Subtraction

In this paper, we examine the suitability of correlogram for background subtraction, as a step towards moving object detection. Correlogram captures inter-pixel relationships in a region and is seen to be effective for modeling the dynamic backgrounds. A multi-channel correlogram is proposed using i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 44; číslo 6; s. 870 - 881
Hlavní autoři: Chiranjeevi, Pojala, Sengupta, Somnath
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we examine the suitability of correlogram for background subtraction, as a step towards moving object detection. Correlogram captures inter-pixel relationships in a region and is seen to be effective for modeling the dynamic backgrounds. A multi-channel correlogram is proposed using inter-channel and intra-channel correlograms to exploit full color information and the inter-pixel relations on the same color planes and across the planes. We thereafter derive a novel feature, termed multi-channel kernel fuzzy correlogram, composed by applying a fuzzy membership transformation over multi-channel correlogram. Multi-channel kernel fuzzy correlogram maps multi-channel correlogram into a reduced dimensionality space and is less sensitivity to noise. The approach handles multimodal distributions without using multiple models per pixel unlike traditional approaches. The approach does not require ideal background frames for background model initialization and can be initialized with moving objects also. Effectiveness of the proposed method is illustrated on different video sequences.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2013.2274330