"Turbo DPSK" using soft multiple-symbol differential sphere decoding

Coded interleaved differential M-ary phase-shift keying (M-DPSK) with iterative decoding, the so-called "Turbo DPSK," is known as a power-efficient transmission format. Due to the rotational invariance of DPSK, it particularly enables detection without channel state information (CSI). Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 52; H. 4; S. 1385 - 1398
Hauptverfasser: Pauli, V., Lampe, L., Schober, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.04.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coded interleaved differential M-ary phase-shift keying (M-DPSK) with iterative decoding, the so-called "Turbo DPSK," is known as a power-efficient transmission format. Due to the rotational invariance of DPSK, it particularly enables detection without channel state information (CSI). However, the soft-input soft-output (SISO) component decoder for DPSK is the computational bottleneck if performance close to the ideal case of perfect CSI is desired. In this paper, we take a fresh look at SISO decoding without CSI and apply sphere decoding (SD) to reduce complexity. In particular, we devise a maximum a posteriori probability (MAP) multiple-symbol differential sphere decoder (MSDSD) which efficiently solves the high-dimensional search problem inherent to detection without CSI. Together with a soft-output generation device the MAP-MSDSD algorithm forms a new SISO-MSDSD module for iterative decoding. We analyze the extrinsic information transfer (EXIT) characteristic of the novel module, by means of which we are able to design powerful encoder and decoder structures. For, respectively, the additive white Gaussian noise (AWGN) and the continuously time-varying Rayleigh-fading channel without CSI these designs operate within 1.7-1.9 and 2.3-2.5 dB of channel capacity assuming perfect CSI. These figures compare favorably with results available in the literature, especially for reasonably high data rates of 1-2 bit/channel use. Simulation studies of the average and the maximum complexity required by SISO-MSDSD demonstrate the advantageous performance versus complexity tradeoff of our approach.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.871048