Learning Algorithms for Quaternion-Valued Neural Networks

This paper presents the deduction of the enhanced gradient descent, conjugate gradient, scaled conjugate gradient, quasi-Newton, and Levenberg–Marquardt methods for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. The performances of these algorithms in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters Jg. 47; H. 3; S. 949 - 973
1. Verfasser: Popa, Călin-Adrian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2018
Springer Nature B.V
Schlagworte:
ISSN:1370-4621, 1573-773X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the deduction of the enhanced gradient descent, conjugate gradient, scaled conjugate gradient, quasi-Newton, and Levenberg–Marquardt methods for training quaternion-valued feedforward neural networks, using the framework of the HR calculus. The performances of these algorithms in the real- and complex-valued cases led to the idea of extending them to the quaternion domain, also. Experiments done using the proposed training methods on time series prediction applications showed a significant performance improvement over the quaternion gradient descent algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-017-9716-1