A Component-Based Framework for Generalized Face Alignment

This paper presents a component-based deformable model for generalized face alignment, in which a novel bistage statistical model is proposed to account for both local and global shape characteristics. Instead of using statistical analysis on the entire shape, we build separate Gaussian models for s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Ročník 41; číslo 1; s. 287 - 298
Hlavní autoři: Yuchi Huang, Qingshan Liu, Metaxas, D N
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2011
Témata:
ISSN:1083-4419, 1941-0492, 1941-0492
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a component-based deformable model for generalized face alignment, in which a novel bistage statistical model is proposed to account for both local and global shape characteristics. Instead of using statistical analysis on the entire shape, we build separate Gaussian models for shape components to preserve more detailed local shape deformations. In each model of components, a Markov network is integrated to provide simple geometry constraints for our search strategy. In order to make a better description of the nonlinear interrelationships over shape components, the Gaussian process latent variable model is adopted to obtain enough control of shape variations. In addition, we adopt an illumination-robust feature to lead the local fitting of every shape point when light conditions change dramatically. To further boost the accuracy and efficiency of our component-based algorithm, an efficient subwindow search technique is adopted to detect components and to provide better initializations for shape components. Based on this approach, our system can generate accurate shape alignment results not only for images with exaggerated expressions and slight shading variation but also for images with occlusion and heavy shadows, which are rarely reported in previous work.
AbstractList This paper presents a component-based deformable model for generalized face alignment, in which a novel bistage statistical model is proposed to account for both local and global shape characteristics. Instead of using statistical analysis on the entire shape, we build separate Gaussian models for shape components to preserve more detailed local shape deformations. In each model of components, a Markov network is integrated to provide simple geometry constraints for our search strategy. In order to make a better description of the nonlinear interrelationships over shape components, the Gaussian process latent variable model is adopted to obtain enough control of shape variations. In addition, we adopt an illumination-robust feature to lead the local fitting of every shape point when light conditions change dramatically. To further boost the accuracy and efficiency of our component-based algorithm, an efficient subwindow search technique is adopted to detect components and to provide better initializations for shape components. Based on this approach, our system can generate accurate shape alignment results not only for images with exaggerated expressions and slight shading variation but also for images with occlusion and heavy shadows, which are rarely reported in previous work.
This paper presents a component-based deformable model for generalized face alignment, in which a novel bistage statistical model is proposed to account for both local and global shape characteristics. Instead of using statistical analysis on the entire shape, we build separate Gaussian models for shape components to preserve more detailed local shape deformations. In each model of components, a Markov network is integrated to provide simple geometry constraints for our search strategy. In order to make a better description of the nonlinear interrelationships over shape components, the Gaussian process latent variable model is adopted to obtain enough control of shape variations. In addition, we adopt an illumination-robust feature to lead the local fitting of every shape point when light conditions change dramatically. To further boost the accuracy and efficiency of our component-based algorithm, an efficient subwindow search technique is adopted to detect components and to provide better initializations for shape components. Based on this approach, our system can generate accurate shape alignment results not only for images with exaggerated expressions and slight shading variation but also for images with occlusion and heavy shadows, which are rarely reported in previous work.This paper presents a component-based deformable model for generalized face alignment, in which a novel bistage statistical model is proposed to account for both local and global shape characteristics. Instead of using statistical analysis on the entire shape, we build separate Gaussian models for shape components to preserve more detailed local shape deformations. In each model of components, a Markov network is integrated to provide simple geometry constraints for our search strategy. In order to make a better description of the nonlinear interrelationships over shape components, the Gaussian process latent variable model is adopted to obtain enough control of shape variations. In addition, we adopt an illumination-robust feature to lead the local fitting of every shape point when light conditions change dramatically. To further boost the accuracy and efficiency of our component-based algorithm, an efficient subwindow search technique is adopted to detect components and to provide better initializations for shape components. Based on this approach, our system can generate accurate shape alignment results not only for images with exaggerated expressions and slight shading variation but also for images with occlusion and heavy shadows, which are rarely reported in previous work.
Author Metaxas, D N
Qingshan Liu
Yuchi Huang
Author_xml – sequence: 1
  surname: Yuchi Huang
  fullname: Yuchi Huang
  email: yuchuang@cs.rutgers.edu
  organization: Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA
– sequence: 2
  surname: Qingshan Liu
  fullname: Qingshan Liu
  email: qsliu@cs.rutgers.edu
  organization: Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA
– sequence: 3
  givenname: D N
  surname: Metaxas
  fullname: Metaxas, D N
  email: dnm@cs.rutgers.edu
  organization: Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20656659$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOwzAUhi0EAlp4AZBQNlgCvjY2Wxtxk0AMwGw59jEK5FLsVAienoS2DAydjo_8ff9w_hHabtoGEDoi-JwQrC6enx7y2TnF_U6xoJTjLbRPFCcp5opu928sWco5UXtoFOMbxlhhle2iPYonYjIRah9dTpO8red9cNOlMxPBJdfB1PDZhvfEtyG5gQaCqcrv4cdYSKZV-drUPX6AdrypIhyu5hi9XF8957fp_ePNXT69Ty2TtEst54VlBHvrReY9gAInLDHKS2alcYSoQiqjCPPWUWkz7qRzxrqCU8uEZWN0usydh_ZjAbHTdRktVJVpoF1ELTlmgnEie_JsI0kwIwyTLBvQkxW6KGpweh7K2oQvvb5MD8glYEMbYwCvbdmZrmybLpiy6rP0UIL-LUEPJehVCb1K_6nr9I3S8VIqAeBPEIJIziT7AXQukYw
CODEN ITSCFI
CitedBy_id crossref_primary_10_1109_TIP_2015_2502485
crossref_primary_10_3233_IFS_141513
crossref_primary_10_1016_j_neunet_2014_06_005
crossref_primary_10_1016_j_neunet_2019_12_009
crossref_primary_10_1016_j_cviu_2016_03_009
crossref_primary_10_1109_TCYB_2018_2863790
crossref_primary_10_1007_s13042_012_0074_z
crossref_primary_10_1109_TAFFC_2014_2347960
crossref_primary_10_1007_s13042_021_01424_3
crossref_primary_10_1016_j_knosys_2015_04_003
Cites_doi 10.1109/TSMCB.2005.846655
10.1109/TSMCB.2008.2009566
10.1109/TSMCB.2005.862728
10.1109/CVPR.2008.4587586
10.1093/ietisy/e89-d.7.2117
10.1109/34.927464
10.1006/cviu.1995.1004
10.1109/ICIP.1997.647401
10.1109/AFGR.2004.1301513
10.1023/B:VISI.0000013087.49260.fb
10.1109/83.557356
10.5244/C.21.79
10.1109/TSMCB.2004.825931
10.1109/ICCV.2003.1238466
10.1109/34.120328
10.7551/mitpress/4175.001.0001
10.1016/S0262-8856(98)00175-9
10.5244/C.13.48
10.1109/ICCV.2007.4409017
10.1023/A:1026501619075
10.1007/978-3-540-88688-4_6
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TSMCB.2010.2052240
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1941-0492
EndPage 298
ExternalDocumentID 20656659
10_1109_TSMCB_2010_2052240
5518438
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c382t-c44bc310fcf57ffee9ed5c1a9f83c8ad119b89a913fcd28c74d8ddacdb42c35c3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286388300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4419
1941-0492
IngestDate Fri Jul 11 14:55:05 EDT 2025
Thu Jul 10 18:46:56 EDT 2025
Mon Jul 21 05:52:53 EDT 2025
Tue Nov 18 21:45:00 EST 2025
Sat Nov 29 08:18:43 EST 2025
Tue Aug 26 17:18:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c44bc310fcf57ffee9ed5c1a9f83c8ad119b89a913fcd28c74d8ddacdb42c35c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 20656659
PQID 1031301778
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1031301778
proquest_miscellaneous_840353418
crossref_citationtrail_10_1109_TSMCB_2010_2052240
pubmed_primary_20656659
crossref_primary_10_1109_TSMCB_2010_2052240
ieee_primary_5518438
PublicationCentury 2000
PublicationDate 2011-Feb.
2011-02-00
2011-Feb
20110201
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-Feb.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationTitleAlternate IEEE Trans Syst Man Cybern B Cybern
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References lawrence (ref14) 2005; 6
zhou (ref31) 2003
ref12
ref15
ref30
ref11
ref10
ref2
ref1
ref18
huang (ref9) 2004
liu (ref20) 2001
lawrence (ref13) 2004
tu (ref26) 2004
scholkopf (ref25) 2001
liang (ref16) 2006
ref24
coughlan (ref3) 2002
ref23
ref22
martinez (ref21) 1998
ref28
ref27
ref29
ref8
ref7
ref4
liang (ref17) 2006
ref6
ref5
liu (ref19) 2002
References_xml – ident: ref28
  doi: 10.1109/TSMCB.2005.846655
– volume: 6
  start-page: 1783
  year: 2005
  ident: ref14
  article-title: probabilistic non-linear principal component analysis with gaussian process latent variable models
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1109/TSMCB.2008.2009566
– ident: ref22
  doi: 10.1109/TSMCB.2005.862728
– ident: ref12
  doi: 10.1109/CVPR.2008.4587586
– start-page: 329
  year: 2004
  ident: ref13
  article-title: gaussian process latent variable models for visualization of high dimensional data
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 687
  year: 2002
  ident: ref19
  article-title: hierarchical shape modeling for automatic face localization
  publication-title: Proc Eur Conf Comput Vis
– ident: ref15
  doi: 10.1093/ietisy/e89-d.7.2117
– ident: ref8
  doi: 10.1109/34.927464
– ident: ref1
  doi: 10.1006/cviu.1995.1004
– ident: ref29
  doi: 10.1109/ICIP.1997.647401
– start-page: 85
  year: 2004
  ident: ref9
  article-title: face alignment under variable illumination
  publication-title: Proc Int Conf Automat Face Gesture Recog
  doi: 10.1109/AFGR.2004.1301513
– ident: ref27
  doi: 10.1023/B:VISI.0000013087.49260.fb
– year: 1998
  ident: ref21
  publication-title: The AR face database
– ident: ref11
  doi: 10.1109/83.557356
– ident: ref4
  doi: 10.5244/C.21.79
– ident: ref23
  doi: 10.1109/TSMCB.2004.825931
– start-page: 109
  year: 2003
  ident: ref31
  article-title: bayesian tangent shape model: estimating shape and pose parameters via bayesian inference
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref30
  doi: 10.1109/ICCV.2003.1238466
– ident: ref6
  doi: 10.1109/34.120328
– start-page: 719
  year: 2004
  ident: ref26
  article-title: face localization via hierarchical condensation with fisher boosting feature selection
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 333
  year: 2006
  ident: ref16
  article-title: an integrated model for accurate shape alignment
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1313
  year: 2006
  ident: ref17
  article-title: accurate face alignment using shape constrained markov network
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– year: 2001
  ident: ref25
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
– start-page: 281
  year: 2001
  ident: ref20
  article-title: learning inhomogeneous gibbs model of faces by minimax entropy
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref2
  doi: 10.1016/S0262-8856(98)00175-9
– start-page: 453
  year: 2002
  ident: ref3
  article-title: finding deformable shapes using loopy belief propagation
  publication-title: Proc 7th Eur Conf Comput Vis
– ident: ref24
  doi: 10.5244/C.13.48
– ident: ref10
  doi: 10.1109/ICCV.2007.4409017
– ident: ref7
  doi: 10.1023/A:1026501619075
– ident: ref18
  doi: 10.1007/978-3-540-88688-4_6
SSID ssj0009097
Score 1.9888281
Snippet This paper presents a component-based deformable model for generalized face alignment, in which a novel bistage statistical model is proposed to account for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 287
SubjectTerms Active shape model
Algorithms
Alignment
Bayes Theorem
Biometric Identification - methods
Bistage statistical model
component detection
Cybernetics
Deformable models
Deformation
Face - anatomy & histology
face alignment
Face detection
Facial animation
Gaussian
Gaussian process latent variable model (GPLVM)
Gaussian processes
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Markov Chains
Markov network
Markov random fields
Mathematical models
Mouth
Normal Distribution
Principal Component Analysis
Searching
Shape control
Statistical analysis
Video Recording - methods
Title A Component-Based Framework for Generalized Face Alignment
URI https://ieeexplore.ieee.org/document/5518438
https://www.ncbi.nlm.nih.gov/pubmed/20656659
https://www.proquest.com/docview/1031301778
https://www.proquest.com/docview/840353418
Volume 41
WOSCitedRecordID wos000286388300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0492
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0009097
  issn: 1083-4419
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61VQ9wgD6gLH3ISBxA4NaJk9jubVt1xQEqJAraW-SM7Wqlahd1dznw6xk7ybYHWqm3SJk41nxjz9gefwPwXphcWcTAUYmGFz5HboKuOJZBk_fMsEy1CH59VZeXejw239fg8-oujPc-JZ_54_iYzvLdDJdxq-wksocVUq_DulJVe1frjmBXtIVUKKTg5OJNf0FGmJOrH9_Oz9osrlyU0YdFCmARI5lIUXrPH6UCKw_HmsnnjF4-rbdb8KKLLdmwNYZtWPPTHXh-j3FwB7a7sTxnHzrC6Y-7cDpkcVqYTak9fkZuzbFRn7PFKKhlnejkb3xj0bPhzeQ6pRG8gp-ji6vzL7yrqcBR6nzBsSgapJAuYChVCN4b70rMLAEkUVuXZabRxppMBnS5RlU47ZxF1xQ5yhLla9iYUn_eABM2l7KRWjdYFdg0NmROqEAgV8FUJgwg6zVbY0c4Hute3NRp4SFMnYCpIzB1B8wAPq2--d3SbTwqvRvVvpLsND6Adz2ANQ2WeAJip362nNexpgXNaEqRDHtAhla8siTfTiJ7Lfir9nubefv__-7Ds3bHOSa7HMDG4nbpD2ET_ywm89sjMtqxPkpG-w9Oe-VB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6CbhLswAbsR8fGPIkDiHk4cdLYuxVExbRSIVEQt8h5tlGlqp1ou8P--tmOUzgA0m6R_OJE_my_Z_v5-wD2mEwLhWgpFqyimUmRSis6FHMrnPdMMA9aBNf9YjAQNzfyYgW-Le_CGGNC8pn57h_DWb6e4sJvlR159rCMi1V44ZWz4m2te4pdVkupuKCCumLZXJFh8mh4eX5yXOdxpSz3XsyTADMfy3iS0gceKUisPB1tBq_Te_1___sGNmJ0Sbp1d9iEFTPZglcPOAe3YDOO5hnZj5TTB9vwo0v8xDCduProsXNsmvSarC3iwloSTUd_fYlCQ7rj0W1IJHgLV73T4ckZjaoKFLlI5xSzrEIX1Fm0eWGtMdLoHBPlIOIolE4SWQmpZMIt6lRgkWmhtUJdZSnyHPk7aE3c_3wAwlTKecWFqLCTYVUpm2hWWAdzx8qOtG1ImpYtMVKOe-WLcRmWHkyWAZjSA1NGYNpwuHznd0248az1tm_2pWVs8TZ8bQAs3XDxZyBqYqaLWelVLdycVhTOhjxh49a8PHfe3Zm8r8Ff1t_0mY-Pf_cLrJ0Nz_tl_-fg1w6s1_vPPvXlE7TmdwvzGV7in_lodrcbuu4_AO_nog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Component-Based+Framework+for+Generalized+Face+Alignment&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Yuchi+Huang&rft.au=Qingshan+Liu&rft.au=Metaxas%2C+D+N&rft.date=2011-02-01&rft.issn=1083-4419&rft.eissn=1941-0492&rft.volume=41&rft.issue=1&rft.spage=287&rft.epage=298&rft_id=info:doi/10.1109%2FTSMCB.2010.2052240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCB_2010_2052240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon