Space tensor conic programming
Space tensors appear in physics and mechanics. Mathematically, they are tensors in the three-dimensional Euclidean space. In the research area of diffusion magnetic resonance imaging, convex optimization problems are formed where higher order positive semi-definite space tensors are involved. In thi...
Saved in:
| Published in: | Computational optimization and applications Vol. 59; no. 1-2; pp. 307 - 319 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.10.2014
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Space tensors appear in physics and mechanics. Mathematically, they are tensors in the three-dimensional Euclidean space. In the research area of diffusion magnetic resonance imaging, convex optimization problems are formed where higher order positive semi-definite space tensors are involved. In this short paper, we investigate these problems from the viewpoint of conic linear programming (CLP). We characterize the dual cone of the positive semi-definite space tensor cone, and study the CLP formulation and the duality of positive semi-definite space tensor conic programming. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-013-9577-0 |