An auxiliary particle filter for nonlinear dynamic equilibrium models
We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer partic...
Uložené v:
| Vydané v: | Economics letters Ročník 144; s. 112 - 114 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.07.2016
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0165-1765, 1873-7374 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer particles to achieve comparable results as currently available particle filters. We illustrate our algorithm in Bayesian estimation of a new Keynesian macroeconomic model.
•An auxiliary particle filter for nonlinear DSGE models is developed.•It achieves more accurate likelihood approximation and accelerates the convergence of posterior sampler.•It requires much fewer particles than generally suggested to obtain comparable efficiency. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0165-1765 1873-7374 |
| DOI: | 10.1016/j.econlet.2016.04.020 |