An auxiliary particle filter for nonlinear dynamic equilibrium models

We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer partic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Economics letters Ročník 144; s. 112 - 114
Hlavní autori: Yang, Yuan, Wang, Lu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.07.2016
Elsevier Science Ltd
Predmet:
ISSN:0165-1765, 1873-7374
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer particles to achieve comparable results as currently available particle filters. We illustrate our algorithm in Bayesian estimation of a new Keynesian macroeconomic model. •An auxiliary particle filter for nonlinear DSGE models is developed.•It achieves more accurate likelihood approximation and accelerates the convergence of posterior sampler.•It requires much fewer particles than generally suggested to obtain comparable efficiency.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0165-1765
1873-7374
DOI:10.1016/j.econlet.2016.04.020