An auxiliary particle filter for nonlinear dynamic equilibrium models
We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer partic...
Uloženo v:
| Vydáno v: | Economics letters Ročník 144; s. 112 - 114 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.07.2016
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0165-1765, 1873-7374 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We develop a particle filter algorithm to approximate the likelihood function of nonlinear dynamic stochastic general equilibrium models. The new algorithm reduces the Monte Carlo variance of likelihood approximation and accelerates the convergence of posterior sampler. It requires much fewer particles to achieve comparable results as currently available particle filters. We illustrate our algorithm in Bayesian estimation of a new Keynesian macroeconomic model.
•An auxiliary particle filter for nonlinear DSGE models is developed.•It achieves more accurate likelihood approximation and accelerates the convergence of posterior sampler.•It requires much fewer particles than generally suggested to obtain comparable efficiency. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0165-1765 1873-7374 |
| DOI: | 10.1016/j.econlet.2016.04.020 |