A VIF-based optimization model to alleviate collinearity problems in multiple linear regression

In this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor ( VIF ). We employ the perturbation method that involves imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics Jg. 29; H. 6; S. 1515 - 1541
Hauptverfasser: Jou, Yow-Jen, Huang, Chien-Chia Liäm, Cho, Hsun-Jung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Schlagworte:
ISSN:0943-4062, 1613-9658
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor ( VIF ). We employ the perturbation method that involves imposing a general symmetric non-diagonal perturbation matrix on the correlation matrix. The proposed VIF -based model reduces the largest VIF by minimizing the resulting biases. The VIF -based model can mitigate the harm from data collinearity through the reduction in both the condition number and VIF s, meanwhile improving the statistical significance. The resulting estimator has bounded biases under an iterative framework and hence is termed the least accumulative bias estimator . Certain potential statistical properties can be further considered as the side constraints for the proposed model. Various numerical examples validate the proposed approach.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-014-0504-3