A VIF-based optimization model to alleviate collinearity problems in multiple linear regression
In this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor ( VIF ). We employ the perturbation method that involves imp...
Uložené v:
| Vydané v: | Computational statistics Ročník 29; číslo 6; s. 1515 - 1541 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0943-4062, 1613-9658 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor (
VIF
). We employ the perturbation method that involves imposing a general symmetric non-diagonal perturbation matrix on the correlation matrix. The proposed
VIF
-based model reduces the largest
VIF
by minimizing the resulting biases. The
VIF
-based model can mitigate the harm from data collinearity through the reduction in both the condition number and
VIF
s, meanwhile improving the statistical significance. The resulting estimator has bounded biases under an iterative framework and hence is termed the
least accumulative bias estimator
. Certain potential statistical properties can be further considered as the side constraints for the proposed model. Various numerical examples validate the proposed approach. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0943-4062 1613-9658 |
| DOI: | 10.1007/s00180-014-0504-3 |