A VIF-based optimization model to alleviate collinearity problems in multiple linear regression

In this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor ( VIF ). We employ the perturbation method that involves imp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational statistics Ročník 29; číslo 6; s. 1515 - 1541
Hlavní autori: Jou, Yow-Jen, Huang, Chien-Chia Liäm, Cho, Hsun-Jung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Predmet:
ISSN:0943-4062, 1613-9658
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor ( VIF ). We employ the perturbation method that involves imposing a general symmetric non-diagonal perturbation matrix on the correlation matrix. The proposed VIF -based model reduces the largest VIF by minimizing the resulting biases. The VIF -based model can mitigate the harm from data collinearity through the reduction in both the condition number and VIF s, meanwhile improving the statistical significance. The resulting estimator has bounded biases under an iterative framework and hence is termed the least accumulative bias estimator . Certain potential statistical properties can be further considered as the side constraints for the proposed model. Various numerical examples validate the proposed approach.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-014-0504-3