Exact exponential algorithms for 3-machine flowshop scheduling problems

In this paper, we focus on the design of an exact exponential time algorithm with a proved worst-case running time for 3-machine flowshop scheduling problems considering worst-case scenarios. For the minimization of the makespan criterion, a Dynamic Programming algorithm running in O ∗ ( 3 n ) is pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of scheduling Ročník 21; číslo 2; s. 227 - 233
Hlavní autori: Shang, Lei, Lenté, Christophe, Liedloff, Mathieu, T’Kindt, Vincent
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2018
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1094-6136, 1099-1425
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we focus on the design of an exact exponential time algorithm with a proved worst-case running time for 3-machine flowshop scheduling problems considering worst-case scenarios. For the minimization of the makespan criterion, a Dynamic Programming algorithm running in O ∗ ( 3 n ) is proposed, which improves the current best-known time complexity 2 O ( n ) × ‖ I ‖ O ( 1 ) in the literature. The idea is based on a dominance condition and the consideration of the Pareto Front in the criteria space. The algorithm can be easily generalized to other problems that have similar structures. The generalization on two problems, namely the F 3 ‖ f max and F 3 ‖ ∑ f i problems, is discussed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1094-6136
1099-1425
DOI:10.1007/s10951-017-0524-2