Bounds on the k-restricted arc connectivity of some bipartite tournaments

For k ≥ 2, a strongly connected digraph D is called λk′-connected if it contains a set of arcs W such that D−W contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as λk′(D)=min{|W|:Wisak-restrictedarc-cut}. In this paper we boun...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 331; s. 54 - 60
Hlavní autoři: Balbuena, C., González-Moreno, D., Olsen, M.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Inc 15.08.2018
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For k ≥ 2, a strongly connected digraph D is called λk′-connected if it contains a set of arcs W such that D−W contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as λk′(D)=min{|W|:Wisak-restrictedarc-cut}. In this paper we bound λk′(T) for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of “good” bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least 1.5k−1 then k(k−1)≤λk′(T)≤k(N−2k−2), where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2018.02.038