Genome-wide identification and expression analyses of the calmodulin and calmodulin-like proteins reveal their involvement in stress response and fruit ripening in papaya

•41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis showed that CaM and CML were involved in stress responses.•Some CaM/CMLs were rigorously regulated by ethylene (ethephon and 1-MCP).•CaM/CMLs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Postharvest biology and technology Ročník 143; s. 13 - 27
Hlavní autoři: Ding, Xiaochun, Zhang, Linpeng, Hao, Yanwei, Xiao, Shuangling, Wu, Zhengxian, Chen, Weixin, Li, Xueping, Zhu, Xiaoyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.2018
Elsevier BV
Témata:
ISSN:0925-5214, 1873-2356
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis showed that CaM and CML were involved in stress responses.•Some CaM/CMLs were rigorously regulated by ethylene (ethephon and 1-MCP).•CaM/CMLs are involved in fruit ripening. Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca2+ sensors that control diverse cellular functions. In this study, 41 genes encoding CaM and CML proteins were identified in the papaya genome, three of which were CaM and others were CML. Sequence alignment, gene structural and phylogenetic analyses revealed that all CaM/CMLs contained the EF-hand, but not other functional domains, and CaM proteins were quite conservative while CML proteins exhibited sequence diversity and structural multiformity. Promoter analysis identified different types of cis-elements related to plant growth and development, hormone response, light response, stress response and transcriptional enhancement in promoter regions of CpCaM/CML genes. Gene expression analysis showed distinctive expression profiles of the CaM/CMLs in different tissue types, different fruit developmental stages and different fruit storage conditions. Several groups of CaM/CML genes were positively or negatively regulated by high and low temperature stresses, such as CML16, CML17.1, CML24 and CML36, indicating that they may play a role in temperature stress adaption. Notably, some CaM/CML genes were rigorously regulated by ethylene (ethephon and 1-MCP treatment), either in a positive or a negative manner, such as CaM7, CML15, CML16, CML17.1, CML37 and CML46. All these results indicated that CaM and CML gene families might play important roles in fruit development, in response to temperature stresses and in fruit ripening process.
AbstractList Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca2+ sensors that control diverse cellular functions. In this study, 41 genes encoding CaM and CML proteins were identified in the papaya genome, three of which were CaM and others were CML. Sequence alignment, gene structural and phylogenetic analyses revealed that all CaM/CMLs contained the EF-hand, but not other functional domains, and CaM proteins were quite conservative while CML proteins exhibited sequence diversity and structural multiformity. Promoter analysis identified different types of cis-elements related to plant growth and development, hormone response, light response, stress response and transcriptional enhancement in promoter regions of CpCaM/CML genes. Gene expression analysis showed distinctive expression profiles of the CaM/CMLs in different tissue types, different fruit developmental stages and different fruit storage conditions. Several groups of CaM/CML genes were positively or negatively regulated by high and low temperature stresses, such as CML16, CML17.1, CML24 and CML36, indicating that they may play a role in temperature stress adaption. Notably, some CaM/CML genes were rigorously regulated by ethylene (ethephon and 1-MCP treatment), either in a positive or a negative manner, such as CaM7, CML15, CML16, CML17.1, CML37 and CML46. All these results indicated that CaM and CML gene families might play important roles in fruit development, in response to temperature stresses and in fruit ripening process.
•41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis showed that CaM and CML were involved in stress responses.•Some CaM/CMLs were rigorously regulated by ethylene (ethephon and 1-MCP).•CaM/CMLs are involved in fruit ripening. Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca2+ sensors that control diverse cellular functions. In this study, 41 genes encoding CaM and CML proteins were identified in the papaya genome, three of which were CaM and others were CML. Sequence alignment, gene structural and phylogenetic analyses revealed that all CaM/CMLs contained the EF-hand, but not other functional domains, and CaM proteins were quite conservative while CML proteins exhibited sequence diversity and structural multiformity. Promoter analysis identified different types of cis-elements related to plant growth and development, hormone response, light response, stress response and transcriptional enhancement in promoter regions of CpCaM/CML genes. Gene expression analysis showed distinctive expression profiles of the CaM/CMLs in different tissue types, different fruit developmental stages and different fruit storage conditions. Several groups of CaM/CML genes were positively or negatively regulated by high and low temperature stresses, such as CML16, CML17.1, CML24 and CML36, indicating that they may play a role in temperature stress adaption. Notably, some CaM/CML genes were rigorously regulated by ethylene (ethephon and 1-MCP treatment), either in a positive or a negative manner, such as CaM7, CML15, CML16, CML17.1, CML37 and CML46. All these results indicated that CaM and CML gene families might play important roles in fruit development, in response to temperature stresses and in fruit ripening process.
Author Xiao, Shuangling
Li, Xueping
Zhu, Xiaoyang
Wu, Zhengxian
Hao, Yanwei
Zhang, Linpeng
Ding, Xiaochun
Chen, Weixin
Author_xml – sequence: 1
  givenname: Xiaochun
  surname: Ding
  fullname: Ding, Xiaochun
– sequence: 2
  givenname: Linpeng
  surname: Zhang
  fullname: Zhang, Linpeng
– sequence: 3
  givenname: Yanwei
  surname: Hao
  fullname: Hao, Yanwei
– sequence: 4
  givenname: Shuangling
  surname: Xiao
  fullname: Xiao, Shuangling
– sequence: 5
  givenname: Zhengxian
  surname: Wu
  fullname: Wu, Zhengxian
– sequence: 6
  givenname: Weixin
  surname: Chen
  fullname: Chen, Weixin
– sequence: 7
  givenname: Xueping
  surname: Li
  fullname: Li, Xueping
  email: lxp88@scau.edu.cn
– sequence: 8
  givenname: Xiaoyang
  surname: Zhu
  fullname: Zhu, Xiaoyang
  email: xiaoyang_zhu@scau.edu.cn
BookMark eNqNkVGP1CAUhYlZE2dH_wPGF19aoS0deDJmoqvJJr7oM2Hoxb1jByrQ0flL_krp1kSzT_tA4CbfOTecc02ufPBAyEvOas54_-ZYTyHlOxPPBwx1w7isWVczzp6QDZe7tmpa0V-RDVONqETDu2fkOqUjY0wIITfk9w34cILqJw5Ay_EZHVqTMXhq_EDh1xQhpXU04yVBosHRfAfUmvEUhnnElfw3ViN-BzrFkAF9ohHOYMZFgpGiP4fxDKeyqLxpyot7QdIUfIJ7IxdnzDTiBB79t4WazGQu5jl56syY4MXfe0u-fnj_Zf-xuv1882n_7rayrWxypUC6Qw9G9mYwUg2g2oNSVimnQLhOctdCr1i_g4GJ3kl1MM72fWusAdda0W7J69W3_ODHDCnrEyYL42g8hDnppml3QnS7HS_oqwfoMcyx5FQoJlvJJC_0lrxdKRtDShGctpjvI87R4Kg500uX-qj_61IvXWrW6dJlcVAPHKaIJxMvj9LuVy2UzM4IUSeL4C0MGMFmPQR8hMsf1DnKBw
CitedBy_id crossref_primary_10_1016_j_plaphy_2025_109885
crossref_primary_10_3390_ijms22010454
crossref_primary_10_1093_jxb_eraa474
crossref_primary_10_1007_s00344_021_10384_5
crossref_primary_10_3389_fpls_2022_964888
crossref_primary_10_1007_s11105_021_01330_6
crossref_primary_10_1016_j_scienta_2023_111911
crossref_primary_10_1016_j_jplph_2020_153251
crossref_primary_10_3390_plants10112332
crossref_primary_10_1016_j_scienta_2019_04_069
crossref_primary_10_32604_phyton_2025_060566
crossref_primary_10_3390_plants11131760
crossref_primary_10_1111_pce_14832
crossref_primary_10_3390_ijms231810500
crossref_primary_10_1016_j_postharvbio_2023_112257
crossref_primary_10_1016_j_postharvbio_2023_112417
crossref_primary_10_1080_17429145_2020_1760367
crossref_primary_10_3390_foods10071643
crossref_primary_10_1016_j_plaphy_2024_108874
crossref_primary_10_1111_ppl_70334
crossref_primary_10_3390_horticulturae10070666
crossref_primary_10_1071_FP25023
crossref_primary_10_7717_peerj_14637
crossref_primary_10_1007_s12298_025_01561_x
crossref_primary_10_1038_s41598_020_65721_7
crossref_primary_10_3389_fmars_2022_818083
crossref_primary_10_1016_j_jplph_2020_153309
crossref_primary_10_1016_j_postharvbio_2021_111493
crossref_primary_10_1016_j_postharvbio_2021_111691
crossref_primary_10_1111_pbi_14297
crossref_primary_10_1016_j_postharvbio_2025_113795
crossref_primary_10_1016_j_postharvbio_2025_113757
Cites_doi 10.1371/journal.pone.0044405
10.1074/jbc.M403819200
10.21273/HORTSCI.34.6.1112
10.1007/s00425-010-1319-2
10.1111/j.1365-313X.2008.03622.x
10.1038/srep14578
10.1007/s00299-012-1247-7
10.1016/j.plaphy.2013.05.020
10.1016/j.biochi.2011.07.012
10.1016/j.scienta.2012.07.007
10.1006/abio.1994.1538
10.1074/jbc.M003566200
10.1016/j.plaphy.2010.04.011
10.1104/pp.010814
10.1105/tpc.111.084988
10.1111/pce.12559
10.4161/psb.21124
10.1046/j.1469-8137.2003.00845.x
10.1016/j.plaphy.2016.02.020
10.1016/j.jmb.2006.03.066
10.3389/fpls.2017.00482
10.1371/journal.pone.0116002
10.1016/S0092-8674(02)00682-7
10.21273/JASHS.120.2.246
10.1038/srep31772
10.1038/hortres.2014.57
10.1016/j.jprot.2014.06.022
10.1016/S0925-5214(97)00028-8
10.1016/j.postharvbio.2013.07.037
10.1080/14620316.2016.1265902
10.1016/j.tplants.2005.07.001
10.1046/j.1432-1327.2001.02301.x
10.1105/tpc.4.9.1123
10.1016/j.foodres.2010.12.035
10.1016/j.devcel.2011.11.006
10.1104/pp.102.018564
10.1186/1471-2229-12-19
10.1016/j.tplants.2015.05.010
10.1186/1471-2229-13-70
10.1104/pp.108.133744
10.3390/plants3030427
10.1021/jf070903c
10.1111/j.1365-313X.2012.05045.x
10.1080/10408390600846390
10.1007/s00344-007-9002-y
10.1093/nar/gkm273
10.1111/j.1365-313X.2008.03544.x
10.1006/meth.2001.1262
10.1104/pp.121.3.705
10.1007/s11103-010-9669-5
10.1093/jxb/erw101
10.1186/1471-2229-7-4
10.1080/15592324.2017.1322246
10.1016/S0925-5214(01)00184-3
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Sep 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 2018
DBID AAYXX
CITATION
7QR
7SS
7T7
7U9
8FD
C1K
FR3
H94
P64
7S9
L.6
DOI 10.1016/j.postharvbio.2018.04.010
DatabaseName CrossRef
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1873-2356
EndPage 27
ExternalDocumentID 10_1016_j_postharvbio_2018_04_010
S0925521417312267
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QR
7SS
7T7
7U9
8FD
AGCQF
C1K
FR3
H94
P64
7S9
L.6
ID FETCH-LOGICAL-c382t-9e8fb6ea86ada89de93b99c99f9e5f481f3e69067ed056f89bafc663acaef3c53
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433225900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5214
IngestDate Sat Sep 27 21:38:48 EDT 2025
Wed Aug 13 03:00:09 EDT 2025
Tue Nov 18 22:11:29 EST 2025
Sat Nov 29 06:40:57 EST 2025
Fri Feb 23 02:29:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Calmodulin-like protein
Fruit ripening
Papaya
Gene expression
Stress response
Calmodulin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-9e8fb6ea86ada89de93b99c99f9e5f481f3e69067ed056f89bafc663acaef3c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2083808122
PQPubID 2045416
PageCount 15
ParticipantIDs proquest_miscellaneous_2237554771
proquest_journals_2083808122
crossref_citationtrail_10_1016_j_postharvbio_2018_04_010
crossref_primary_10_1016_j_postharvbio_2018_04_010
elsevier_sciencedirect_doi_10_1016_j_postharvbio_2018_04_010
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Postharvest biology and technology
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Landoni, De Francesco, Galbiati, Tonelli (bib0090) 2010; 74
Hoeflich, Ikura (bib0065) 2002; 108
Liao, Deng, Qin, Tang, Shu, Ding (bib0110) 2017; 8
Perochon, Aldon, Galaud, Ranty (bib0170) 2011; 93
Mccormack, Tsai, Braam (bib0140) 2005; 10
Qiu, Nishina, Paull (bib0175) 1995; 120
Wan, Li, Zou, Zhang, Cong, Wang (bib0225) 2012; 31
Wang, Diao, Yang, Qiao, Wang, Acharya (bib0235) 2015; 38
McCormack, Braam (bib0135) 2003; 159
Townley, Knight (bib0205) 2002; 128
Barry, Giovannoni (bib0025) 2007; 26
Miller, McDonald (bib0145) 1999; 34
Munir, Khan, Song, Zhang, Ye, Wang (bib0150) 2016; 102
Liu, Gao, Li, Han, Liu, Sun (bib0115) 2008; 55
Vert, Chory (bib0210) 2011; 21
Yang, Peng, Bauchan (bib0250) 2014; 1
Magnan, Ranty, Charpenteau, Sotta, Galaud, Aldon (bib0125) 2008; 56
Fabi, Cordenunsi, de Mattos Barreto, Mercadante, Lajolo, Oliveira do Nascimento (bib0045) 2007; 55
Jeong, Huber, Sargent (bib0070) 2002; 25
Zhao, Zhang, Liu, Jia, Song (bib0280) 2014; 5
Livak, Schmittgen (bib0085) 2001; 25
Al-Quraan, Locy, Singh (bib0015) 2010; 48
Bang, Yong, Boqiang, Guozheng, Shiping (bib0020) 2014; 109
Virdi, Singh, Singh (bib0215) 2015; 6
Ruge, Flosdorff, Ebersberger, Chigri, Vothknecht (bib0195) 2016; 67
Zhu, Perez, Aldon, Galaud (bib0300) 2017
Grabarek (bib0060) 2006; 359
Delk (bib0040) 2006
Ferguson (bib0050) 1984; 7
Jgd, Vitoria (bib0075) 2011; 44
Giammaria, Grandellis, Bachmann, Gargantini, Feingold, Bryan (bib0055) 2011; 233
Zhang, Zhou, Gao, Zheng, Xu, Zhang (bib0275) 2009; 149
Liu, Li, Shang, Li, Mu, Sun (bib0120) 2003; 132
Reddy, Ali, Celesnik, Day (bib0190) 2011; 23
Wan, Wilkins (bib0220) 1994; 223
Park, Kim, Lee, Bahk, Yun, Lim (bib0155) 2007; 35
Wu, Jinn (bib0240) 2012; 7
Yang, Peng, Whitaker, Conway (bib0255) 2012; 12
Wang, Gong, Su, Li, Pang, Zhang (bib0230) 2017; 92
Leba, Cheval, Ortiz-Martín, Ranty, Beuzón, Galaud (bib0095) 2012; 71
Raz, Fluhr (bib0185) 1992; 4
Zeng, Xu, Singh, Wang, Du, Poovaiah (bib0270) 2015; 6
Bhattacharya, Lakhman, Singh (bib0030) 2004; 279
Zhu, Robe, Jomat, Aldon, Mazars, Galaud (bib0305) 2017; 58
Kamthan, Kamthan, Kumar, Sharma, Ansari, Thakur (bib0080) 2015; 5
Li, Zhu, Zhao, Fu, Li, Chen (bib0105) 2013; 86
Ranty, Aldon, Cotelle, Galaud, Thuleau, Mazars (bib0180) 2016; 7
Yang, Poovaiah (bib0260) 2000; 275
Li, Zhu, Mao, Zou, Fu, Chen (bib0100) 2013; 70
Zhu, Li, Chen, Chen, Lu, Chen (bib0295) 2012; 7
Peng, Yang, Ii (bib0165) 2014; 3
Zhao, Liu, Xu, Cao, Braam, Cai (bib0285) 2013; 13
Aghdam, Hassanpouraghdam, Paliyath, Farmani (bib0005) 2012; 144
Boonburapong, Buaboocha (bib0035) 2007; 7
Ah, Olivari, Haley, Knight, Trewavas (bib0010) 1999; 121
Zhu, Dunand, Snedden, Galaud (bib0290) 2015; 20
Martínez-Romero, Bailén, Serrano, Guillén, Valverde, Zapata (bib0130) 2007; 47
Shoaib, Liu, Xing, Saddam, Ouyang, Zhang (bib0200) 2016; 6
Paull, Nishijima, Reyes, Cavaletto (bib0160) 1997; 11
Yamakawa, Mitsuhara, Ito, Seo, Kamada, Ohashi (bib0245) 2001; 268
Yuan, Zhang, Shen, Zhu, Ye, Chen (bib0265) 2014; 9
McCormack (10.1016/j.postharvbio.2018.04.010_bib0135) 2003; 159
Shoaib (10.1016/j.postharvbio.2018.04.010_bib0200) 2016; 6
Yang (10.1016/j.postharvbio.2018.04.010_bib0260) 2000; 275
Wang (10.1016/j.postharvbio.2018.04.010_bib0235) 2015; 38
Landoni (10.1016/j.postharvbio.2018.04.010_bib0090) 2010; 74
Barry (10.1016/j.postharvbio.2018.04.010_bib0025) 2007; 26
Hoeflich (10.1016/j.postharvbio.2018.04.010_bib0065) 2002; 108
Ranty (10.1016/j.postharvbio.2018.04.010_bib0180) 2016; 7
Fabi (10.1016/j.postharvbio.2018.04.010_bib0045) 2007; 55
Yang (10.1016/j.postharvbio.2018.04.010_bib0250) 2014; 1
Delk (10.1016/j.postharvbio.2018.04.010_bib0040) 2006
Yamakawa (10.1016/j.postharvbio.2018.04.010_bib0245) 2001; 268
Yang (10.1016/j.postharvbio.2018.04.010_bib0255) 2012; 12
Bhattacharya (10.1016/j.postharvbio.2018.04.010_bib0030) 2004; 279
Raz (10.1016/j.postharvbio.2018.04.010_bib0185) 1992; 4
Vert (10.1016/j.postharvbio.2018.04.010_bib0210) 2011; 21
Townley (10.1016/j.postharvbio.2018.04.010_bib0205) 2002; 128
Park (10.1016/j.postharvbio.2018.04.010_bib0155) 2007; 35
Liao (10.1016/j.postharvbio.2018.04.010_bib0110) 2017; 8
Liu (10.1016/j.postharvbio.2018.04.010_bib0115) 2008; 55
Zhang (10.1016/j.postharvbio.2018.04.010_bib0275) 2009; 149
Wan (10.1016/j.postharvbio.2018.04.010_bib0225) 2012; 31
Livak (10.1016/j.postharvbio.2018.04.010_bib0085) 2001; 25
Li (10.1016/j.postharvbio.2018.04.010_bib0100) 2013; 70
Paull (10.1016/j.postharvbio.2018.04.010_bib0160) 1997; 11
Jeong (10.1016/j.postharvbio.2018.04.010_bib0070) 2002; 25
Martínez-Romero (10.1016/j.postharvbio.2018.04.010_bib0130) 2007; 47
Yuan (10.1016/j.postharvbio.2018.04.010_bib0265) 2014; 9
Aghdam (10.1016/j.postharvbio.2018.04.010_bib0005) 2012; 144
Boonburapong (10.1016/j.postharvbio.2018.04.010_bib0035) 2007; 7
Wu (10.1016/j.postharvbio.2018.04.010_bib0240) 2012; 7
Zhu (10.1016/j.postharvbio.2018.04.010_bib0305) 2017; 58
Magnan (10.1016/j.postharvbio.2018.04.010_bib0125) 2008; 56
Li (10.1016/j.postharvbio.2018.04.010_bib0105) 2013; 86
Bang (10.1016/j.postharvbio.2018.04.010_bib0020) 2014; 109
Zeng (10.1016/j.postharvbio.2018.04.010_bib0270) 2015; 6
Leba (10.1016/j.postharvbio.2018.04.010_bib0095) 2012; 71
Wan (10.1016/j.postharvbio.2018.04.010_bib0220) 1994; 223
Munir (10.1016/j.postharvbio.2018.04.010_bib0150) 2016; 102
Al-Quraan (10.1016/j.postharvbio.2018.04.010_bib0015) 2010; 48
Zhu (10.1016/j.postharvbio.2018.04.010_bib0300) 2017
Kamthan (10.1016/j.postharvbio.2018.04.010_bib0080) 2015; 5
Ferguson (10.1016/j.postharvbio.2018.04.010_bib0050) 1984; 7
Miller (10.1016/j.postharvbio.2018.04.010_bib0145) 1999; 34
Jgd (10.1016/j.postharvbio.2018.04.010_bib0075) 2011; 44
Qiu (10.1016/j.postharvbio.2018.04.010_bib0175) 1995; 120
Peng (10.1016/j.postharvbio.2018.04.010_bib0165) 2014; 3
Zhao (10.1016/j.postharvbio.2018.04.010_bib0285) 2013; 13
Zhao (10.1016/j.postharvbio.2018.04.010_bib0280) 2014; 5
Mccormack (10.1016/j.postharvbio.2018.04.010_bib0140) 2005; 10
Wang (10.1016/j.postharvbio.2018.04.010_bib0230) 2017; 92
Reddy (10.1016/j.postharvbio.2018.04.010_bib0190) 2011; 23
Giammaria (10.1016/j.postharvbio.2018.04.010_bib0055) 2011; 233
Liu (10.1016/j.postharvbio.2018.04.010_bib0120) 2003; 132
Zhu (10.1016/j.postharvbio.2018.04.010_bib0295) 2012; 7
Ruge (10.1016/j.postharvbio.2018.04.010_bib0195) 2016; 67
Virdi (10.1016/j.postharvbio.2018.04.010_bib0215) 2015; 6
Perochon (10.1016/j.postharvbio.2018.04.010_bib0170) 2011; 93
Zhu (10.1016/j.postharvbio.2018.04.010_bib0290) 2015; 20
Ah (10.1016/j.postharvbio.2018.04.010_bib0010) 1999; 121
Grabarek (10.1016/j.postharvbio.2018.04.010_bib0060) 2006; 359
References_xml – volume: 7
  start-page: 477
  year: 1984
  end-page: 489
  ident: bib0050
  article-title: Calcium in plant senescence and fruit ripening
  publication-title: Plant Cell Physiol.
– volume: 70
  start-page: 81
  year: 2013
  end-page: 92
  ident: bib0100
  article-title: Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit
  publication-title: Plant Physiol. Biochem.
– volume: 4
  start-page: 1123
  year: 1992
  end-page: 1130
  ident: bib0185
  article-title: Calcium requirement for ethylene-dependent responses
  publication-title: Plant Cell
– volume: 121
  start-page: 705
  year: 1999
  end-page: 714
  ident: bib0010
  article-title: Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco
  publication-title: Plant Physiol.
– volume: 6
  start-page: 600
  year: 2015
  ident: bib0270
  article-title: Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses
  publication-title: Front. Plant Sci.
– volume: 86
  start-page: 437
  year: 2013
  end-page: 446
  ident: bib0105
  article-title: Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism
  publication-title: Postharvest Biol. Techol.
– volume: 26
  start-page: 143
  year: 2007
  ident: bib0025
  article-title: Ethylene and fruit ripening
  publication-title: J. Plant. Growth Regul.
– volume: 20
  start-page: 483
  year: 2015
  end-page: 489
  ident: bib0290
  article-title: CaM and CML emergence in the green lineage
  publication-title: Trends Plant Sci.
– volume: 7
  start-page: e44405
  year: 2012
  ident: bib0295
  article-title: Evaluation of New reference genes in papaya for accurate transcript normalization under different experimental conditions
  publication-title: Plos One
– volume: 7
  start-page: 1056
  year: 2012
  ident: bib0240
  article-title: Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (
  publication-title: Plant Signal. Behav.
– volume: 35
  start-page: 3612
  year: 2007
  end-page: 3623
  ident: bib0155
  article-title: Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter
  publication-title: Nucleic Acids Res.
– volume: 108
  start-page: 739
  year: 2002
  end-page: 742
  ident: bib0065
  article-title: Calmodulin in action: diversity in target recognition and activation mechanisms
  publication-title: Cell
– volume: 44
  start-page: 1306
  year: 2011
  end-page: 1313
  ident: bib0075
  article-title: Papaya: nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview
  publication-title: Food Res. Int.
– volume: 268
  start-page: 3916
  year: 2001
  end-page: 3929
  ident: bib0245
  article-title: Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant
  publication-title: Eur. J. Biochem.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib0085
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method
  publication-title: Methods
– volume: 223
  start-page: 7
  year: 1994
  end-page: 12
  ident: bib0220
  article-title: A modified Hot borate method significantly enhances the yield of high-quality RNA from Cotton (
  publication-title: Anal. Biochem.
– volume: 159
  start-page: 585
  year: 2003
  end-page: 598
  ident: bib0135
  article-title: Calmodulins and related potential calcium sensors of Arabidopsis
  publication-title: New Phytol.
– volume: 128
  start-page: 1169
  year: 2002
  ident: bib0205
  article-title: Calmodulin as a potential negative regulator of Arabidopsis COR gene expression
  publication-title: Plant Physiol.
– year: 2006
  ident: bib0040
  article-title: The Regulation and Function of CML23 and CML24: Arabidopsis thaliana Genes Encoding Calcium-Binding Proteins Implicated in Abscisic Acid Response, Floral Transition, and Ion Homeostasis
– volume: 5
  start-page: 807
  year: 2014
  ident: bib0280
  article-title: Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-octanoyl homoserine lactone in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
– start-page: e1322246
  year: 2017
  ident: bib0300
  article-title: Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses
  publication-title: Plant Signal. Behav.
– volume: 92
  start-page: 240
  year: 2017
  end-page: 250
  ident: bib0230
  article-title: MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses
  publication-title: J. Hortic. Sci. Biotechol.
– volume: 120
  start-page: 246
  year: 1995
  end-page: 253
  ident: bib0175
  article-title: Papaya fruit growth, calcium uptake, and fruit ripening
  publication-title: J. Am. Soc. Hortic. Sci.
– volume: 5
  start-page: 14578
  year: 2015
  ident: bib0080
  article-title: A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter
  publication-title: Sci. Rep.
– volume: 7
  start-page: 4
  year: 2007
  ident: bib0035
  article-title: Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins
  publication-title: BMC. Plant Biol.
– volume: 359
  start-page: 509
  year: 2006
  end-page: 525
  ident: bib0060
  article-title: Structural basis for diversity of the EF-hand calcium-binding proteins
  publication-title: J. Mol. Biol.
– volume: 67
  start-page: 3985
  year: 2016
  end-page: 3996
  ident: bib0195
  article-title: The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence
  publication-title: J. Exp. Bot.
– volume: 55
  start-page: 6118
  year: 2007
  end-page: 6123
  ident: bib0045
  article-title: Papaya fruit ripening: response to ethylene and 1-methylcyclopropene (1-MCP)
  publication-title: J. Agric. Food Chem.
– volume: 25
  start-page: 241
  year: 2002
  end-page: 256
  ident: bib0070
  article-title: Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (
  publication-title: Postharvest Biol. Technol.
– volume: 3
  start-page: 427
  year: 2014
  end-page: 441
  ident: bib0165
  article-title: Calmodulin Gene expression in response to mechanical wounding and botrytiscinerea infection in tomato fruit
  publication-title: Plants
– volume: 34
  start-page: 1112
  year: 1999
  end-page: 1115
  ident: bib0145
  article-title: Irradiation, stage of maturity at harvest, and storage temperature during ripening affect papaya fruit quality
  publication-title: HortScience
– volume: 233
  start-page: 593
  year: 2011
  end-page: 609
  ident: bib0055
  article-title: StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling
  publication-title: Planta
– volume: 47
  start-page: 543
  year: 2007
  ident: bib0130
  article-title: Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 275
  start-page: 38467
  year: 2000
  end-page: 38473
  ident: bib0260
  article-title: An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death
  publication-title: J. Biol. Chem.
– volume: 149
  start-page: 1773
  year: 2009
  ident: bib0275
  article-title: Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis
  publication-title: Plant Physiol.
– volume: 74
  start-page: 235
  year: 2010
  ident: bib0090
  article-title: A loss-of-function mutation in calmodulin2 gene affects pollen germination in Arabidopsis thaliana
  publication-title: Plant Mol. Biol.
– volume: 55
  start-page: 760
  year: 2008
  ident: bib0115
  article-title: The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana
  publication-title: Plant J.
– volume: 11
  start-page: 165
  year: 1997
  end-page: 179
  ident: bib0160
  article-title: Postharvest handling and losses during marketing of papaya (
  publication-title: Postharvest Biol. Techol.
– volume: 1
  start-page: 14057
  year: 2014
  ident: bib0250
  article-title: Functional analysis of tomato calmodulin gene family during fruit development and ripening
  publication-title: Hortic. Res.
– volume: 71
  start-page: 976
  year: 2012
  end-page: 989
  ident: bib0095
  article-title: CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway
  publication-title: Plant J.
– volume: 8
  start-page: 482
  year: 2017
  ident: bib0110
  article-title: Genome-wide identification and analyses of calmodulins and calmodulin-like proteins in lotus japonicas
  publication-title: Front. Plant Sci.
– volume: 13
  start-page: 70
  year: 2013
  ident: bib0285
  article-title: Genome-wide identification and functional analyses of calmodulin genes in
  publication-title: BMC Plant Biol.
– volume: 12
  start-page: 19
  year: 2012
  ident: bib0255
  article-title: Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening
  publication-title: BMC Plant Biol.
– volume: 109
  start-page: 38
  year: 2014
  end-page: 49
  ident: bib0020
  article-title: Ca(2+)-CaM regulating viability of
  publication-title: J. Proteom.
– volume: 132
  start-page: 1186
  year: 2003
  end-page: 1195
  ident: bib0120
  article-title: Calmodulin is involved in heat shock signal transduction in wheat
  publication-title: Plant Physiol.
– volume: 102
  start-page: 167
  year: 2016
  end-page: 179
  ident: bib0150
  article-title: Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (
  publication-title: Plant Physiol. Biol. Chem.
– volume: 6
  start-page: 31772
  year: 2016
  ident: bib0200
  article-title: Overexpression of calmodulin-like (ShCML44) stress-responsive gene fromSolanum habrochaitesenhances tolerance to multiple abiotic stresses
  publication-title: Sci. Rep.
– volume: 31
  start-page: 1269
  year: 2012
  end-page: 1281
  ident: bib0225
  article-title: Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis
  publication-title: Plant Cell Rep.
– volume: 7
  start-page: 327
  year: 2016
  ident: bib0180
  article-title: Calcium sensors as key hubs in plant responses to biotic and abiotic stresses
  publication-title: Front. Plant Sci.
– volume: 48
  start-page: 697
  year: 2010
  end-page: 702
  ident: bib0015
  article-title: Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress
  publication-title: Plant Physiol. Biol. Chem.
– volume: 10
  start-page: 383
  year: 2005
  end-page: 389
  ident: bib0140
  article-title: Handling calcium signaling:
  publication-title: Trends Plant Sci.
– volume: 21
  start-page: 985
  year: 2011
  ident: bib0210
  article-title: Crosstalk in cellular signaling: background noise or the real thing?
  publication-title: Dev. Cell
– volume: 144
  start-page: 102
  year: 2012
  end-page: 115
  ident: bib0005
  article-title: The language of calcium in postharvest life of fruits, vegetables and flowers
  publication-title: Sci. Hortic.
– volume: 279
  start-page: 37291
  year: 2004
  end-page: 37297
  ident: bib0030
  article-title: Modulation of L-type calcium channels in drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 2010
  year: 2011
  ident: bib0190
  article-title: Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression
  publication-title: Plant Cell
– volume: 9
  start-page: e116002
  year: 2014
  ident: bib0265
  article-title: The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury
  publication-title: Plos One
– volume: 58
  start-page: 307
  year: 2017
  end-page: 319
  ident: bib0305
  article-title: CML8, an Arabidopsis calmodulin-like protein, plays a role in
  publication-title: Plant Cell Physiol.
– volume: 56
  start-page: 575
  year: 2008
  end-page: 589
  ident: bib0125
  article-title: Mutations in AtCML9, a calmodulin-like protein from
  publication-title: Plant J.
– volume: 93
  start-page: 2048
  year: 2011
  end-page: 2053
  ident: bib0170
  article-title: Calmodulin and calmodulin-like proteins in plant calcium signaling
  publication-title: Biochimie
– volume: 6
  year: 2015
  ident: bib0215
  article-title: Abiotic stress responses in plants: roles of calmodulin-regulated proteins
  publication-title: Front. Plant Sci.
– volume: 38
  start-page: 2372
  year: 2015
  ident: bib0235
  article-title: CML25 mediates the Ca(
  publication-title: Plant Cell Environ.
– volume: 7
  start-page: e44405
  issue: 8
  year: 2012
  ident: 10.1016/j.postharvbio.2018.04.010_bib0295
  article-title: Evaluation of New reference genes in papaya for accurate transcript normalization under different experimental conditions
  publication-title: Plos One
  doi: 10.1371/journal.pone.0044405
– volume: 279
  start-page: 37291
  issue: 36
  year: 2004
  ident: 10.1016/j.postharvbio.2018.04.010_bib0030
  article-title: Modulation of L-type calcium channels in drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403819200
– volume: 34
  start-page: 1112
  issue: 6
  year: 1999
  ident: 10.1016/j.postharvbio.2018.04.010_bib0145
  article-title: Irradiation, stage of maturity at harvest, and storage temperature during ripening affect papaya fruit quality
  publication-title: HortScience
  doi: 10.21273/HORTSCI.34.6.1112
– volume: 233
  start-page: 593
  issue: 3
  year: 2011
  ident: 10.1016/j.postharvbio.2018.04.010_bib0055
  article-title: StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling
  publication-title: Planta
  doi: 10.1007/s00425-010-1319-2
– volume: 56
  start-page: 575
  issue: 4
  year: 2008
  ident: 10.1016/j.postharvbio.2018.04.010_bib0125
  article-title: Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03622.x
– volume: 5
  start-page: 14578
  year: 2015
  ident: 10.1016/j.postharvbio.2018.04.010_bib0080
  article-title: A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter
  publication-title: Sci. Rep.
  doi: 10.1038/srep14578
– volume: 58
  start-page: 307
  issue: 2
  year: 2017
  ident: 10.1016/j.postharvbio.2018.04.010_bib0305
  article-title: CML8, an Arabidopsis calmodulin-like protein, plays a role in Pseudomonas syringae plant immunity
  publication-title: Plant Cell Physiol.
– volume: 31
  start-page: 1269
  issue: 7
  year: 2012
  ident: 10.1016/j.postharvbio.2018.04.010_bib0225
  article-title: Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-012-1247-7
– volume: 7
  start-page: 477
  issue: 6
  year: 1984
  ident: 10.1016/j.postharvbio.2018.04.010_bib0050
  article-title: Calcium in plant senescence and fruit ripening
  publication-title: Plant Cell Physiol.
– volume: 70
  start-page: 81
  year: 2013
  ident: 10.1016/j.postharvbio.2018.04.010_bib0100
  article-title: Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.05.020
– volume: 5
  start-page: 807
  year: 2014
  ident: 10.1016/j.postharvbio.2018.04.010_bib0280
  article-title: Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-octanoyl homoserine lactone in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
– volume: 93
  start-page: 2048
  issue: 12
  year: 2011
  ident: 10.1016/j.postharvbio.2018.04.010_bib0170
  article-title: Calmodulin and calmodulin-like proteins in plant calcium signaling
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2011.07.012
– volume: 144
  start-page: 102
  year: 2012
  ident: 10.1016/j.postharvbio.2018.04.010_bib0005
  article-title: The language of calcium in postharvest life of fruits, vegetables and flowers
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2012.07.007
– volume: 223
  start-page: 7
  issue: 1
  year: 1994
  ident: 10.1016/j.postharvbio.2018.04.010_bib0220
  article-title: A modified Hot borate method significantly enhances the yield of high-quality RNA from Cotton (Gossypium hirsutum L.)
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1994.1538
– volume: 275
  start-page: 38467
  issue: 49
  year: 2000
  ident: 10.1016/j.postharvbio.2018.04.010_bib0260
  article-title: An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003566200
– volume: 48
  start-page: 697
  issue: 8
  year: 2010
  ident: 10.1016/j.postharvbio.2018.04.010_bib0015
  article-title: Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress
  publication-title: Plant Physiol. Biol. Chem.
  doi: 10.1016/j.plaphy.2010.04.011
– volume: 128
  start-page: 1169
  issue: 4
  year: 2002
  ident: 10.1016/j.postharvbio.2018.04.010_bib0205
  article-title: Calmodulin as a potential negative regulator of Arabidopsis COR gene expression
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010814
– volume: 23
  start-page: 2010
  issue: 6
  year: 2011
  ident: 10.1016/j.postharvbio.2018.04.010_bib0190
  article-title: Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084988
– volume: 38
  start-page: 2372
  issue: 11
  year: 2015
  ident: 10.1016/j.postharvbio.2018.04.010_bib0235
  article-title: Arabidopsis thaliana CML25 mediates the Ca(2+) regulation of K(+) transmembrane trafficking during pollen germination and tube elongation
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12559
– volume: 7
  start-page: 1056
  issue: 9
  year: 2012
  ident: 10.1016/j.postharvbio.2018.04.010_bib0240
  article-title: Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.)
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.21124
– volume: 159
  start-page: 585
  issue: 3
  year: 2003
  ident: 10.1016/j.postharvbio.2018.04.010_bib0135
  article-title: Calmodulins and related potential calcium sensors of Arabidopsis
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00845.x
– volume: 102
  start-page: 167
  year: 2016
  ident: 10.1016/j.postharvbio.2018.04.010_bib0150
  article-title: Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum
  publication-title: Plant Physiol. Biol. Chem.
  doi: 10.1016/j.plaphy.2016.02.020
– volume: 359
  start-page: 509
  issue: 3
  year: 2006
  ident: 10.1016/j.postharvbio.2018.04.010_bib0060
  article-title: Structural basis for diversity of the EF-hand calcium-binding proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.03.066
– volume: 8
  start-page: 482
  year: 2017
  ident: 10.1016/j.postharvbio.2018.04.010_bib0110
  article-title: Genome-wide identification and analyses of calmodulins and calmodulin-like proteins in lotus japonicas
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00482
– volume: 9
  start-page: e116002
  issue: 12
  year: 2014
  ident: 10.1016/j.postharvbio.2018.04.010_bib0265
  article-title: The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury
  publication-title: Plos One
  doi: 10.1371/journal.pone.0116002
– volume: 108
  start-page: 739
  issue: 6
  year: 2002
  ident: 10.1016/j.postharvbio.2018.04.010_bib0065
  article-title: Calmodulin in action: diversity in target recognition and activation mechanisms
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00682-7
– volume: 120
  start-page: 246
  issue: 2
  year: 1995
  ident: 10.1016/j.postharvbio.2018.04.010_bib0175
  article-title: Papaya fruit growth, calcium uptake, and fruit ripening
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.120.2.246
– volume: 6
  start-page: 31772
  year: 2016
  ident: 10.1016/j.postharvbio.2018.04.010_bib0200
  article-title: Overexpression of calmodulin-like (ShCML44) stress-responsive gene fromSolanum habrochaitesenhances tolerance to multiple abiotic stresses
  publication-title: Sci. Rep.
  doi: 10.1038/srep31772
– volume: 1
  start-page: 14057
  year: 2014
  ident: 10.1016/j.postharvbio.2018.04.010_bib0250
  article-title: Functional analysis of tomato calmodulin gene family during fruit development and ripening
  publication-title: Hortic. Res.
  doi: 10.1038/hortres.2014.57
– volume: 109
  start-page: 38
  year: 2014
  ident: 10.1016/j.postharvbio.2018.04.010_bib0020
  article-title: Ca(2+)-CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2014.06.022
– volume: 11
  start-page: 165
  issue: 3
  year: 1997
  ident: 10.1016/j.postharvbio.2018.04.010_bib0160
  article-title: Postharvest handling and losses during marketing of papaya (Carica papaya L.)
  publication-title: Postharvest Biol. Techol.
  doi: 10.1016/S0925-5214(97)00028-8
– volume: 86
  start-page: 437
  issue: 4
  year: 2013
  ident: 10.1016/j.postharvbio.2018.04.010_bib0105
  article-title: Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism
  publication-title: Postharvest Biol. Techol.
  doi: 10.1016/j.postharvbio.2013.07.037
– volume: 6
  issue: 809
  year: 2015
  ident: 10.1016/j.postharvbio.2018.04.010_bib0215
  article-title: Abiotic stress responses in plants: roles of calmodulin-regulated proteins
  publication-title: Front. Plant Sci.
– volume: 6
  start-page: 600
  issue: 660
  year: 2015
  ident: 10.1016/j.postharvbio.2018.04.010_bib0270
  article-title: Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses
  publication-title: Front. Plant Sci.
– volume: 92
  start-page: 240
  issue: 3
  year: 2017
  ident: 10.1016/j.postharvbio.2018.04.010_bib0230
  article-title: MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses
  publication-title: J. Hortic. Sci. Biotechol.
  doi: 10.1080/14620316.2016.1265902
– volume: 10
  start-page: 383
  issue: 8
  year: 2005
  ident: 10.1016/j.postharvbio.2018.04.010_bib0140
  article-title: Handling calcium signaling: Arabidopsis CaMs and CMLs
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2005.07.001
– year: 2006
  ident: 10.1016/j.postharvbio.2018.04.010_bib0040
– volume: 268
  start-page: 3916
  issue: 14
  year: 2001
  ident: 10.1016/j.postharvbio.2018.04.010_bib0245
  article-title: Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.2001.02301.x
– volume: 4
  start-page: 1123
  issue: 9
  year: 1992
  ident: 10.1016/j.postharvbio.2018.04.010_bib0185
  article-title: Calcium requirement for ethylene-dependent responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.4.9.1123
– volume: 44
  start-page: 1306
  issue: 5
  year: 2011
  ident: 10.1016/j.postharvbio.2018.04.010_bib0075
  article-title: Papaya: nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.12.035
– volume: 7
  start-page: 327
  issue: 25
  year: 2016
  ident: 10.1016/j.postharvbio.2018.04.010_bib0180
  article-title: Calcium sensors as key hubs in plant responses to biotic and abiotic stresses
  publication-title: Front. Plant Sci.
– volume: 21
  start-page: 985
  issue: 6
  year: 2011
  ident: 10.1016/j.postharvbio.2018.04.010_bib0210
  article-title: Crosstalk in cellular signaling: background noise or the real thing?
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.11.006
– volume: 132
  start-page: 1186
  issue: 3
  year: 2003
  ident: 10.1016/j.postharvbio.2018.04.010_bib0120
  article-title: Calmodulin is involved in heat shock signal transduction in wheat
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.018564
– volume: 12
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1016/j.postharvbio.2018.04.010_bib0255
  article-title: Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-19
– volume: 20
  start-page: 483
  issue: 8
  year: 2015
  ident: 10.1016/j.postharvbio.2018.04.010_bib0290
  article-title: CaM and CML emergence in the green lineage
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.05.010
– volume: 13
  start-page: 70
  issue: 1
  year: 2013
  ident: 10.1016/j.postharvbio.2018.04.010_bib0285
  article-title: Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-70
– volume: 149
  start-page: 1773
  issue: 4
  year: 2009
  ident: 10.1016/j.postharvbio.2018.04.010_bib0275
  article-title: Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.133744
– volume: 3
  start-page: 427
  issue: 3
  year: 2014
  ident: 10.1016/j.postharvbio.2018.04.010_bib0165
  article-title: Calmodulin Gene expression in response to mechanical wounding and botrytiscinerea infection in tomato fruit
  publication-title: Plants
  doi: 10.3390/plants3030427
– volume: 55
  start-page: 6118
  issue: 15
  year: 2007
  ident: 10.1016/j.postharvbio.2018.04.010_bib0045
  article-title: Papaya fruit ripening: response to ethylene and 1-methylcyclopropene (1-MCP)
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf070903c
– volume: 71
  start-page: 976
  issue: 6
  year: 2012
  ident: 10.1016/j.postharvbio.2018.04.010_bib0095
  article-title: CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.05045.x
– volume: 47
  start-page: 543
  issue: 6
  year: 2007
  ident: 10.1016/j.postharvbio.2018.04.010_bib0130
  article-title: Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408390600846390
– volume: 26
  start-page: 143
  issue: 2
  year: 2007
  ident: 10.1016/j.postharvbio.2018.04.010_bib0025
  article-title: Ethylene and fruit ripening
  publication-title: J. Plant. Growth Regul.
  doi: 10.1007/s00344-007-9002-y
– volume: 35
  start-page: 3612
  issue: 11
  year: 2007
  ident: 10.1016/j.postharvbio.2018.04.010_bib0155
  article-title: Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm273
– volume: 55
  start-page: 760
  issue: 5
  year: 2008
  ident: 10.1016/j.postharvbio.2018.04.010_bib0115
  article-title: The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03544.x
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.postharvbio.2018.04.010_bib0085
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 121
  start-page: 705
  issue: 3
  year: 1999
  ident: 10.1016/j.postharvbio.2018.04.010_bib0010
  article-title: Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.3.705
– volume: 74
  start-page: 235
  issue: 3
  year: 2010
  ident: 10.1016/j.postharvbio.2018.04.010_bib0090
  article-title: A loss-of-function mutation in calmodulin2 gene affects pollen germination in Arabidopsis thaliana
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-010-9669-5
– volume: 67
  start-page: 3985
  issue: 13
  year: 2016
  ident: 10.1016/j.postharvbio.2018.04.010_bib0195
  article-title: The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw101
– volume: 7
  start-page: 4
  issue: 1
  year: 2007
  ident: 10.1016/j.postharvbio.2018.04.010_bib0035
  article-title: Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins
  publication-title: BMC. Plant Biol.
  doi: 10.1186/1471-2229-7-4
– start-page: e1322246
  year: 2017
  ident: 10.1016/j.postharvbio.2018.04.010_bib0300
  article-title: Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2017.1322246
– volume: 25
  start-page: 241
  issue: 3
  year: 2002
  ident: 10.1016/j.postharvbio.2018.04.010_bib0070
  article-title: Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Persea americana) fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(01)00184-3
SSID ssj0005558
Score 2.400524
Snippet •41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis...
Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms 1-methylcyclopropene
calcium
Calcium ions
Calcium-binding protein
Calmodulin
Calmodulin-like protein
cold stress
Developmental stages
EF-hand
ethephon
ethylene
Fruit ripening
fruiting
Fruits
Gene expression
Gene families
Genes
Genomes
High temperature
Light effects
Low temperature
Nucleotide sequence
Papaya
Phylogeny
Plant growth
promoter regions
Proteins
Ripening
sequence alignment
sequence diversity
Storage conditions
Stress response
Stresses
temperature
Temperature effects
Transcription
transcription (genetics)
Title Genome-wide identification and expression analyses of the calmodulin and calmodulin-like proteins reveal their involvement in stress response and fruit ripening in papaya
URI https://dx.doi.org/10.1016/j.postharvbio.2018.04.010
https://www.proquest.com/docview/2083808122
https://www.proquest.com/docview/2237554771
Volume 143
WOSCitedRecordID wos000433225900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2356
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005558
  issn: 0925-5214
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhA8IL4mCgN5EuKlytQ6TWNLvFTQ8aGp8NCh8hQ5ib1mdEnp2q78S_xr_BPc2U6abRoaD7xE-bCTKPfL-Xy--x0hr7iMezLpMk_D-ObhwpwXs7TnyR5jWgsMb9Km2EQ4HPLxWHxpNH6XuTCraZjnfL0Ws_8qajgHwsbU2X8Qd3VTOAH7IHTYgthheyPBv1d5caq88yxVrSx1wUBWzOgkV2sX-oqHSEhiWWfR_gRxnRapCU032W7VoTfNvmNCVYGlMXGdYYV0xHaNIctBwRnScVNswOWezG3orV2b0PNltmiBdlK5y6CZwRD9U9YNYywaPJFzJP1o1YmhFldc_-9cFZZxJotksqzAXbm-YXoNTzre6FbjDf4m83OVlSexs3H8TpYSE5ldc-f-6PAqvsv55Kq8nK913yYLYIZts1P3ldXsPPQ95lsW80r1d_2a8rZJsVfGFOveONmfuQ8BHwFDArmhyHUxuRd4vIefo4Ojw8NoNBiPXs9-eFjiDEMBXL2XW2SbhYEAFbzd_zgYf9pEJAWmnGz19nfI3iYc8ZqnX2dOXTIsjLU0ekDuu2kO7Vt4PiQNlT8i9_rHc0f1ouCoRoX5mPyqwZZehC0FHNANbGkJW1poChikG5yalpdgS0vYUgtbamBLa7CFfWphS0vYmhsZ2NISttjKwvYJOToYjN5-8FwdES_xOVt4QnEd95TkPZlKLlIl_FiIRAgtVKC7vKN9hXzdoUphOqC5iKVOwBKXiVTaTwJ_h2zlRa6eEor2AbRP_MDUYpBxDMZEGnCm223dCXpNwktxRIkj2cdaL9OojKY8iWqSjFCSUbsbgSSbhFVdZ5Zp5iad3pQyj5zJbE3hCNB7k-67JU4ip8LO4Dr3sR4PY02yV12GUQeXEmWuiiW0YX4IE5Ew7Dz7-y2ek7ubv3aXbC3mS_WC3E5Wi-xs_tL9AX8ABvII9g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+identification+and+expression+analyses+of+the+calmodulin+and+calmodulin-like+proteins+reveal+their+involvement+in+stress+response+and+fruit+ripening+in+papaya&rft.jtitle=Postharvest+biology+and+technology&rft.au=Ding%2C+Xiaochun&rft.au=Zhang%2C+Linpeng&rft.au=Hao%2C+Yanwei&rft.au=Xiao%2C+Shuangling&rft.date=2018-09-01&rft.pub=Elsevier+BV&rft.issn=0925-5214&rft.eissn=1873-2356&rft.volume=143&rft.spage=13&rft_id=info:doi/10.1016%2Fj.postharvbio.2018.04.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5214&client=summon