Genome-wide identification and expression analyses of the calmodulin and calmodulin-like proteins reveal their involvement in stress response and fruit ripening in papaya
•41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis showed that CaM and CML were involved in stress responses.•Some CaM/CMLs were rigorously regulated by ethylene (ethephon and 1-MCP).•CaM/CMLs...
Uloženo v:
| Vydáno v: | Postharvest biology and technology Ročník 143; s. 13 - 27 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.09.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0925-5214, 1873-2356 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis showed that CaM and CML were involved in stress responses.•Some CaM/CMLs were rigorously regulated by ethylene (ethephon and 1-MCP).•CaM/CMLs are involved in fruit ripening.
Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca2+ sensors that control diverse cellular functions. In this study, 41 genes encoding CaM and CML proteins were identified in the papaya genome, three of which were CaM and others were CML. Sequence alignment, gene structural and phylogenetic analyses revealed that all CaM/CMLs contained the EF-hand, but not other functional domains, and CaM proteins were quite conservative while CML proteins exhibited sequence diversity and structural multiformity. Promoter analysis identified different types of cis-elements related to plant growth and development, hormone response, light response, stress response and transcriptional enhancement in promoter regions of CpCaM/CML genes. Gene expression analysis showed distinctive expression profiles of the CaM/CMLs in different tissue types, different fruit developmental stages and different fruit storage conditions. Several groups of CaM/CML genes were positively or negatively regulated by high and low temperature stresses, such as CML16, CML17.1, CML24 and CML36, indicating that they may play a role in temperature stress adaption. Notably, some CaM/CML genes were rigorously regulated by ethylene (ethephon and 1-MCP treatment), either in a positive or a negative manner, such as CaM7, CML15, CML16, CML17.1, CML37 and CML46. All these results indicated that CaM and CML gene families might play important roles in fruit development, in response to temperature stresses and in fruit ripening process. |
|---|---|
| AbstractList | Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca2+ sensors that control diverse cellular functions. In this study, 41 genes encoding CaM and CML proteins were identified in the papaya genome, three of which were CaM and others were CML. Sequence alignment, gene structural and phylogenetic analyses revealed that all CaM/CMLs contained the EF-hand, but not other functional domains, and CaM proteins were quite conservative while CML proteins exhibited sequence diversity and structural multiformity. Promoter analysis identified different types of cis-elements related to plant growth and development, hormone response, light response, stress response and transcriptional enhancement in promoter regions of CpCaM/CML genes. Gene expression analysis showed distinctive expression profiles of the CaM/CMLs in different tissue types, different fruit developmental stages and different fruit storage conditions. Several groups of CaM/CML genes were positively or negatively regulated by high and low temperature stresses, such as CML16, CML17.1, CML24 and CML36, indicating that they may play a role in temperature stress adaption. Notably, some CaM/CML genes were rigorously regulated by ethylene (ethephon and 1-MCP treatment), either in a positive or a negative manner, such as CaM7, CML15, CML16, CML17.1, CML37 and CML46. All these results indicated that CaM and CML gene families might play important roles in fruit development, in response to temperature stresses and in fruit ripening process. •41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis showed that CaM and CML were involved in stress responses.•Some CaM/CMLs were rigorously regulated by ethylene (ethephon and 1-MCP).•CaM/CMLs are involved in fruit ripening. Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca2+ sensors that control diverse cellular functions. In this study, 41 genes encoding CaM and CML proteins were identified in the papaya genome, three of which were CaM and others were CML. Sequence alignment, gene structural and phylogenetic analyses revealed that all CaM/CMLs contained the EF-hand, but not other functional domains, and CaM proteins were quite conservative while CML proteins exhibited sequence diversity and structural multiformity. Promoter analysis identified different types of cis-elements related to plant growth and development, hormone response, light response, stress response and transcriptional enhancement in promoter regions of CpCaM/CML genes. Gene expression analysis showed distinctive expression profiles of the CaM/CMLs in different tissue types, different fruit developmental stages and different fruit storage conditions. Several groups of CaM/CML genes were positively or negatively regulated by high and low temperature stresses, such as CML16, CML17.1, CML24 and CML36, indicating that they may play a role in temperature stress adaption. Notably, some CaM/CML genes were rigorously regulated by ethylene (ethephon and 1-MCP treatment), either in a positive or a negative manner, such as CaM7, CML15, CML16, CML17.1, CML37 and CML46. All these results indicated that CaM and CML gene families might play important roles in fruit development, in response to temperature stresses and in fruit ripening process. |
| Author | Xiao, Shuangling Li, Xueping Zhu, Xiaoyang Wu, Zhengxian Hao, Yanwei Zhang, Linpeng Ding, Xiaochun Chen, Weixin |
| Author_xml | – sequence: 1 givenname: Xiaochun surname: Ding fullname: Ding, Xiaochun – sequence: 2 givenname: Linpeng surname: Zhang fullname: Zhang, Linpeng – sequence: 3 givenname: Yanwei surname: Hao fullname: Hao, Yanwei – sequence: 4 givenname: Shuangling surname: Xiao fullname: Xiao, Shuangling – sequence: 5 givenname: Zhengxian surname: Wu fullname: Wu, Zhengxian – sequence: 6 givenname: Weixin surname: Chen fullname: Chen, Weixin – sequence: 7 givenname: Xueping surname: Li fullname: Li, Xueping email: lxp88@scau.edu.cn – sequence: 8 givenname: Xiaoyang surname: Zhu fullname: Zhu, Xiaoyang email: xiaoyang_zhu@scau.edu.cn |
| BookMark | eNqNkVGP1CAUhYlZE2dH_wPGF19aoS0deDJmoqvJJr7oM2Hoxb1jByrQ0flL_krp1kSzT_tA4CbfOTecc02ufPBAyEvOas54_-ZYTyHlOxPPBwx1w7isWVczzp6QDZe7tmpa0V-RDVONqETDu2fkOqUjY0wIITfk9w34cILqJw5Ay_EZHVqTMXhq_EDh1xQhpXU04yVBosHRfAfUmvEUhnnElfw3ViN-BzrFkAF9ohHOYMZFgpGiP4fxDKeyqLxpyot7QdIUfIJ7IxdnzDTiBB79t4WazGQu5jl56syY4MXfe0u-fnj_Zf-xuv1882n_7rayrWxypUC6Qw9G9mYwUg2g2oNSVimnQLhOctdCr1i_g4GJ3kl1MM72fWusAdda0W7J69W3_ODHDCnrEyYL42g8hDnppml3QnS7HS_oqwfoMcyx5FQoJlvJJC_0lrxdKRtDShGctpjvI87R4Kg500uX-qj_61IvXWrW6dJlcVAPHKaIJxMvj9LuVy2UzM4IUSeL4C0MGMFmPQR8hMsf1DnKBw |
| CitedBy_id | crossref_primary_10_1016_j_plaphy_2025_109885 crossref_primary_10_3390_ijms22010454 crossref_primary_10_1093_jxb_eraa474 crossref_primary_10_1007_s00344_021_10384_5 crossref_primary_10_3389_fpls_2022_964888 crossref_primary_10_1007_s11105_021_01330_6 crossref_primary_10_1016_j_scienta_2023_111911 crossref_primary_10_1016_j_jplph_2020_153251 crossref_primary_10_3390_plants10112332 crossref_primary_10_1016_j_scienta_2019_04_069 crossref_primary_10_32604_phyton_2025_060566 crossref_primary_10_3390_plants11131760 crossref_primary_10_1111_pce_14832 crossref_primary_10_3390_ijms231810500 crossref_primary_10_1016_j_postharvbio_2023_112257 crossref_primary_10_1016_j_postharvbio_2023_112417 crossref_primary_10_1080_17429145_2020_1760367 crossref_primary_10_3390_foods10071643 crossref_primary_10_1016_j_plaphy_2024_108874 crossref_primary_10_1111_ppl_70334 crossref_primary_10_3390_horticulturae10070666 crossref_primary_10_1071_FP25023 crossref_primary_10_7717_peerj_14637 crossref_primary_10_1007_s12298_025_01561_x crossref_primary_10_1038_s41598_020_65721_7 crossref_primary_10_3389_fmars_2022_818083 crossref_primary_10_1016_j_jplph_2020_153309 crossref_primary_10_1016_j_postharvbio_2021_111493 crossref_primary_10_1016_j_postharvbio_2021_111691 crossref_primary_10_1111_pbi_14297 crossref_primary_10_1016_j_postharvbio_2025_113795 crossref_primary_10_1016_j_postharvbio_2025_113757 |
| Cites_doi | 10.1371/journal.pone.0044405 10.1074/jbc.M403819200 10.21273/HORTSCI.34.6.1112 10.1007/s00425-010-1319-2 10.1111/j.1365-313X.2008.03622.x 10.1038/srep14578 10.1007/s00299-012-1247-7 10.1016/j.plaphy.2013.05.020 10.1016/j.biochi.2011.07.012 10.1016/j.scienta.2012.07.007 10.1006/abio.1994.1538 10.1074/jbc.M003566200 10.1016/j.plaphy.2010.04.011 10.1104/pp.010814 10.1105/tpc.111.084988 10.1111/pce.12559 10.4161/psb.21124 10.1046/j.1469-8137.2003.00845.x 10.1016/j.plaphy.2016.02.020 10.1016/j.jmb.2006.03.066 10.3389/fpls.2017.00482 10.1371/journal.pone.0116002 10.1016/S0092-8674(02)00682-7 10.21273/JASHS.120.2.246 10.1038/srep31772 10.1038/hortres.2014.57 10.1016/j.jprot.2014.06.022 10.1016/S0925-5214(97)00028-8 10.1016/j.postharvbio.2013.07.037 10.1080/14620316.2016.1265902 10.1016/j.tplants.2005.07.001 10.1046/j.1432-1327.2001.02301.x 10.1105/tpc.4.9.1123 10.1016/j.foodres.2010.12.035 10.1016/j.devcel.2011.11.006 10.1104/pp.102.018564 10.1186/1471-2229-12-19 10.1016/j.tplants.2015.05.010 10.1186/1471-2229-13-70 10.1104/pp.108.133744 10.3390/plants3030427 10.1021/jf070903c 10.1111/j.1365-313X.2012.05045.x 10.1080/10408390600846390 10.1007/s00344-007-9002-y 10.1093/nar/gkm273 10.1111/j.1365-313X.2008.03544.x 10.1006/meth.2001.1262 10.1104/pp.121.3.705 10.1007/s11103-010-9669-5 10.1093/jxb/erw101 10.1186/1471-2229-7-4 10.1080/15592324.2017.1322246 10.1016/S0925-5214(01)00184-3 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Sep 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Sep 2018 |
| DBID | AAYXX CITATION 7QR 7SS 7T7 7U9 8FD C1K FR3 H94 P64 7S9 L.6 |
| DOI | 10.1016/j.postharvbio.2018.04.010 |
| DatabaseName | CrossRef Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Entomology Abstracts Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Entomology Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1873-2356 |
| EndPage | 27 |
| ExternalDocumentID | 10_1016_j_postharvbio_2018_04_010 S0925521417312267 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K WUQ Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QR 7SS 7T7 7U9 8FD AGCQF C1K FR3 H94 P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c382t-9e8fb6ea86ada89de93b99c99f9e5f481f3e69067ed056f89bafc663acaef3c53 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433225900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5214 |
| IngestDate | Sat Sep 27 21:38:48 EDT 2025 Wed Aug 13 03:00:09 EDT 2025 Tue Nov 18 22:11:29 EST 2025 Sat Nov 29 06:40:57 EST 2025 Fri Feb 23 02:29:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Calmodulin-like protein Fruit ripening Papaya Gene expression Stress response Calmodulin |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c382t-9e8fb6ea86ada89de93b99c99f9e5f481f3e69067ed056f89bafc663acaef3c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2083808122 |
| PQPubID | 2045416 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2237554771 proquest_journals_2083808122 crossref_citationtrail_10_1016_j_postharvbio_2018_04_010 crossref_primary_10_1016_j_postharvbio_2018_04_010 elsevier_sciencedirect_doi_10_1016_j_postharvbio_2018_04_010 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 2018-09-00 20180901 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Postharvest biology and technology |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Landoni, De Francesco, Galbiati, Tonelli (bib0090) 2010; 74 Hoeflich, Ikura (bib0065) 2002; 108 Liao, Deng, Qin, Tang, Shu, Ding (bib0110) 2017; 8 Perochon, Aldon, Galaud, Ranty (bib0170) 2011; 93 Mccormack, Tsai, Braam (bib0140) 2005; 10 Qiu, Nishina, Paull (bib0175) 1995; 120 Wan, Li, Zou, Zhang, Cong, Wang (bib0225) 2012; 31 Wang, Diao, Yang, Qiao, Wang, Acharya (bib0235) 2015; 38 McCormack, Braam (bib0135) 2003; 159 Townley, Knight (bib0205) 2002; 128 Barry, Giovannoni (bib0025) 2007; 26 Miller, McDonald (bib0145) 1999; 34 Munir, Khan, Song, Zhang, Ye, Wang (bib0150) 2016; 102 Liu, Gao, Li, Han, Liu, Sun (bib0115) 2008; 55 Vert, Chory (bib0210) 2011; 21 Yang, Peng, Bauchan (bib0250) 2014; 1 Magnan, Ranty, Charpenteau, Sotta, Galaud, Aldon (bib0125) 2008; 56 Fabi, Cordenunsi, de Mattos Barreto, Mercadante, Lajolo, Oliveira do Nascimento (bib0045) 2007; 55 Jeong, Huber, Sargent (bib0070) 2002; 25 Zhao, Zhang, Liu, Jia, Song (bib0280) 2014; 5 Livak, Schmittgen (bib0085) 2001; 25 Al-Quraan, Locy, Singh (bib0015) 2010; 48 Bang, Yong, Boqiang, Guozheng, Shiping (bib0020) 2014; 109 Virdi, Singh, Singh (bib0215) 2015; 6 Ruge, Flosdorff, Ebersberger, Chigri, Vothknecht (bib0195) 2016; 67 Zhu, Perez, Aldon, Galaud (bib0300) 2017 Grabarek (bib0060) 2006; 359 Delk (bib0040) 2006 Ferguson (bib0050) 1984; 7 Jgd, Vitoria (bib0075) 2011; 44 Giammaria, Grandellis, Bachmann, Gargantini, Feingold, Bryan (bib0055) 2011; 233 Zhang, Zhou, Gao, Zheng, Xu, Zhang (bib0275) 2009; 149 Liu, Li, Shang, Li, Mu, Sun (bib0120) 2003; 132 Reddy, Ali, Celesnik, Day (bib0190) 2011; 23 Wan, Wilkins (bib0220) 1994; 223 Park, Kim, Lee, Bahk, Yun, Lim (bib0155) 2007; 35 Wu, Jinn (bib0240) 2012; 7 Yang, Peng, Whitaker, Conway (bib0255) 2012; 12 Wang, Gong, Su, Li, Pang, Zhang (bib0230) 2017; 92 Leba, Cheval, Ortiz-Martín, Ranty, Beuzón, Galaud (bib0095) 2012; 71 Raz, Fluhr (bib0185) 1992; 4 Zeng, Xu, Singh, Wang, Du, Poovaiah (bib0270) 2015; 6 Bhattacharya, Lakhman, Singh (bib0030) 2004; 279 Zhu, Robe, Jomat, Aldon, Mazars, Galaud (bib0305) 2017; 58 Kamthan, Kamthan, Kumar, Sharma, Ansari, Thakur (bib0080) 2015; 5 Li, Zhu, Zhao, Fu, Li, Chen (bib0105) 2013; 86 Ranty, Aldon, Cotelle, Galaud, Thuleau, Mazars (bib0180) 2016; 7 Yang, Poovaiah (bib0260) 2000; 275 Li, Zhu, Mao, Zou, Fu, Chen (bib0100) 2013; 70 Zhu, Li, Chen, Chen, Lu, Chen (bib0295) 2012; 7 Peng, Yang, Ii (bib0165) 2014; 3 Zhao, Liu, Xu, Cao, Braam, Cai (bib0285) 2013; 13 Aghdam, Hassanpouraghdam, Paliyath, Farmani (bib0005) 2012; 144 Boonburapong, Buaboocha (bib0035) 2007; 7 Ah, Olivari, Haley, Knight, Trewavas (bib0010) 1999; 121 Zhu, Dunand, Snedden, Galaud (bib0290) 2015; 20 Martínez-Romero, Bailén, Serrano, Guillén, Valverde, Zapata (bib0130) 2007; 47 Shoaib, Liu, Xing, Saddam, Ouyang, Zhang (bib0200) 2016; 6 Paull, Nishijima, Reyes, Cavaletto (bib0160) 1997; 11 Yamakawa, Mitsuhara, Ito, Seo, Kamada, Ohashi (bib0245) 2001; 268 Yuan, Zhang, Shen, Zhu, Ye, Chen (bib0265) 2014; 9 McCormack (10.1016/j.postharvbio.2018.04.010_bib0135) 2003; 159 Shoaib (10.1016/j.postharvbio.2018.04.010_bib0200) 2016; 6 Yang (10.1016/j.postharvbio.2018.04.010_bib0260) 2000; 275 Wang (10.1016/j.postharvbio.2018.04.010_bib0235) 2015; 38 Landoni (10.1016/j.postharvbio.2018.04.010_bib0090) 2010; 74 Barry (10.1016/j.postharvbio.2018.04.010_bib0025) 2007; 26 Hoeflich (10.1016/j.postharvbio.2018.04.010_bib0065) 2002; 108 Ranty (10.1016/j.postharvbio.2018.04.010_bib0180) 2016; 7 Fabi (10.1016/j.postharvbio.2018.04.010_bib0045) 2007; 55 Yang (10.1016/j.postharvbio.2018.04.010_bib0250) 2014; 1 Delk (10.1016/j.postharvbio.2018.04.010_bib0040) 2006 Yamakawa (10.1016/j.postharvbio.2018.04.010_bib0245) 2001; 268 Yang (10.1016/j.postharvbio.2018.04.010_bib0255) 2012; 12 Bhattacharya (10.1016/j.postharvbio.2018.04.010_bib0030) 2004; 279 Raz (10.1016/j.postharvbio.2018.04.010_bib0185) 1992; 4 Vert (10.1016/j.postharvbio.2018.04.010_bib0210) 2011; 21 Townley (10.1016/j.postharvbio.2018.04.010_bib0205) 2002; 128 Park (10.1016/j.postharvbio.2018.04.010_bib0155) 2007; 35 Liao (10.1016/j.postharvbio.2018.04.010_bib0110) 2017; 8 Liu (10.1016/j.postharvbio.2018.04.010_bib0115) 2008; 55 Zhang (10.1016/j.postharvbio.2018.04.010_bib0275) 2009; 149 Wan (10.1016/j.postharvbio.2018.04.010_bib0225) 2012; 31 Livak (10.1016/j.postharvbio.2018.04.010_bib0085) 2001; 25 Li (10.1016/j.postharvbio.2018.04.010_bib0100) 2013; 70 Paull (10.1016/j.postharvbio.2018.04.010_bib0160) 1997; 11 Jeong (10.1016/j.postharvbio.2018.04.010_bib0070) 2002; 25 Martínez-Romero (10.1016/j.postharvbio.2018.04.010_bib0130) 2007; 47 Yuan (10.1016/j.postharvbio.2018.04.010_bib0265) 2014; 9 Aghdam (10.1016/j.postharvbio.2018.04.010_bib0005) 2012; 144 Boonburapong (10.1016/j.postharvbio.2018.04.010_bib0035) 2007; 7 Wu (10.1016/j.postharvbio.2018.04.010_bib0240) 2012; 7 Zhu (10.1016/j.postharvbio.2018.04.010_bib0305) 2017; 58 Magnan (10.1016/j.postharvbio.2018.04.010_bib0125) 2008; 56 Li (10.1016/j.postharvbio.2018.04.010_bib0105) 2013; 86 Bang (10.1016/j.postharvbio.2018.04.010_bib0020) 2014; 109 Zeng (10.1016/j.postharvbio.2018.04.010_bib0270) 2015; 6 Leba (10.1016/j.postharvbio.2018.04.010_bib0095) 2012; 71 Wan (10.1016/j.postharvbio.2018.04.010_bib0220) 1994; 223 Munir (10.1016/j.postharvbio.2018.04.010_bib0150) 2016; 102 Al-Quraan (10.1016/j.postharvbio.2018.04.010_bib0015) 2010; 48 Zhu (10.1016/j.postharvbio.2018.04.010_bib0300) 2017 Kamthan (10.1016/j.postharvbio.2018.04.010_bib0080) 2015; 5 Ferguson (10.1016/j.postharvbio.2018.04.010_bib0050) 1984; 7 Miller (10.1016/j.postharvbio.2018.04.010_bib0145) 1999; 34 Jgd (10.1016/j.postharvbio.2018.04.010_bib0075) 2011; 44 Qiu (10.1016/j.postharvbio.2018.04.010_bib0175) 1995; 120 Peng (10.1016/j.postharvbio.2018.04.010_bib0165) 2014; 3 Zhao (10.1016/j.postharvbio.2018.04.010_bib0285) 2013; 13 Zhao (10.1016/j.postharvbio.2018.04.010_bib0280) 2014; 5 Mccormack (10.1016/j.postharvbio.2018.04.010_bib0140) 2005; 10 Wang (10.1016/j.postharvbio.2018.04.010_bib0230) 2017; 92 Reddy (10.1016/j.postharvbio.2018.04.010_bib0190) 2011; 23 Giammaria (10.1016/j.postharvbio.2018.04.010_bib0055) 2011; 233 Liu (10.1016/j.postharvbio.2018.04.010_bib0120) 2003; 132 Zhu (10.1016/j.postharvbio.2018.04.010_bib0295) 2012; 7 Ruge (10.1016/j.postharvbio.2018.04.010_bib0195) 2016; 67 Virdi (10.1016/j.postharvbio.2018.04.010_bib0215) 2015; 6 Perochon (10.1016/j.postharvbio.2018.04.010_bib0170) 2011; 93 Zhu (10.1016/j.postharvbio.2018.04.010_bib0290) 2015; 20 Ah (10.1016/j.postharvbio.2018.04.010_bib0010) 1999; 121 Grabarek (10.1016/j.postharvbio.2018.04.010_bib0060) 2006; 359 |
| References_xml | – volume: 7 start-page: 477 year: 1984 end-page: 489 ident: bib0050 article-title: Calcium in plant senescence and fruit ripening publication-title: Plant Cell Physiol. – volume: 70 start-page: 81 year: 2013 end-page: 92 ident: bib0100 article-title: Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit publication-title: Plant Physiol. Biochem. – volume: 4 start-page: 1123 year: 1992 end-page: 1130 ident: bib0185 article-title: Calcium requirement for ethylene-dependent responses publication-title: Plant Cell – volume: 121 start-page: 705 year: 1999 end-page: 714 ident: bib0010 article-title: Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco publication-title: Plant Physiol. – volume: 6 start-page: 600 year: 2015 ident: bib0270 article-title: Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses publication-title: Front. Plant Sci. – volume: 86 start-page: 437 year: 2013 end-page: 446 ident: bib0105 article-title: Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism publication-title: Postharvest Biol. Techol. – volume: 26 start-page: 143 year: 2007 ident: bib0025 article-title: Ethylene and fruit ripening publication-title: J. Plant. Growth Regul. – volume: 20 start-page: 483 year: 2015 end-page: 489 ident: bib0290 article-title: CaM and CML emergence in the green lineage publication-title: Trends Plant Sci. – volume: 7 start-page: e44405 year: 2012 ident: bib0295 article-title: Evaluation of New reference genes in papaya for accurate transcript normalization under different experimental conditions publication-title: Plos One – volume: 7 start-page: 1056 year: 2012 ident: bib0240 article-title: Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice ( publication-title: Plant Signal. Behav. – volume: 35 start-page: 3612 year: 2007 end-page: 3623 ident: bib0155 article-title: Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter publication-title: Nucleic Acids Res. – volume: 108 start-page: 739 year: 2002 end-page: 742 ident: bib0065 article-title: Calmodulin in action: diversity in target recognition and activation mechanisms publication-title: Cell – volume: 44 start-page: 1306 year: 2011 end-page: 1313 ident: bib0075 article-title: Papaya: nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview publication-title: Food Res. Int. – volume: 268 start-page: 3916 year: 2001 end-page: 3929 ident: bib0245 article-title: Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant publication-title: Eur. J. Biochem. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib0085 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method publication-title: Methods – volume: 223 start-page: 7 year: 1994 end-page: 12 ident: bib0220 article-title: A modified Hot borate method significantly enhances the yield of high-quality RNA from Cotton ( publication-title: Anal. Biochem. – volume: 159 start-page: 585 year: 2003 end-page: 598 ident: bib0135 article-title: Calmodulins and related potential calcium sensors of Arabidopsis publication-title: New Phytol. – volume: 128 start-page: 1169 year: 2002 ident: bib0205 article-title: Calmodulin as a potential negative regulator of Arabidopsis COR gene expression publication-title: Plant Physiol. – year: 2006 ident: bib0040 article-title: The Regulation and Function of CML23 and CML24: Arabidopsis thaliana Genes Encoding Calcium-Binding Proteins Implicated in Abscisic Acid Response, Floral Transition, and Ion Homeostasis – volume: 5 start-page: 807 year: 2014 ident: bib0280 article-title: Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-octanoyl homoserine lactone in Arabidopsis thaliana publication-title: Front. Plant Sci. – start-page: e1322246 year: 2017 ident: bib0300 article-title: Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses publication-title: Plant Signal. Behav. – volume: 92 start-page: 240 year: 2017 end-page: 250 ident: bib0230 article-title: MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses publication-title: J. Hortic. Sci. Biotechol. – volume: 120 start-page: 246 year: 1995 end-page: 253 ident: bib0175 article-title: Papaya fruit growth, calcium uptake, and fruit ripening publication-title: J. Am. Soc. Hortic. Sci. – volume: 5 start-page: 14578 year: 2015 ident: bib0080 article-title: A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter publication-title: Sci. Rep. – volume: 7 start-page: 4 year: 2007 ident: bib0035 article-title: Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins publication-title: BMC. Plant Biol. – volume: 359 start-page: 509 year: 2006 end-page: 525 ident: bib0060 article-title: Structural basis for diversity of the EF-hand calcium-binding proteins publication-title: J. Mol. Biol. – volume: 67 start-page: 3985 year: 2016 end-page: 3996 ident: bib0195 article-title: The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence publication-title: J. Exp. Bot. – volume: 55 start-page: 6118 year: 2007 end-page: 6123 ident: bib0045 article-title: Papaya fruit ripening: response to ethylene and 1-methylcyclopropene (1-MCP) publication-title: J. Agric. Food Chem. – volume: 25 start-page: 241 year: 2002 end-page: 256 ident: bib0070 article-title: Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado ( publication-title: Postharvest Biol. Technol. – volume: 3 start-page: 427 year: 2014 end-page: 441 ident: bib0165 article-title: Calmodulin Gene expression in response to mechanical wounding and botrytiscinerea infection in tomato fruit publication-title: Plants – volume: 34 start-page: 1112 year: 1999 end-page: 1115 ident: bib0145 article-title: Irradiation, stage of maturity at harvest, and storage temperature during ripening affect papaya fruit quality publication-title: HortScience – volume: 233 start-page: 593 year: 2011 end-page: 609 ident: bib0055 article-title: StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling publication-title: Planta – volume: 47 start-page: 543 year: 2007 ident: bib0130 article-title: Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review publication-title: Crit. Rev. Food Sci. Nutr. – volume: 275 start-page: 38467 year: 2000 end-page: 38473 ident: bib0260 article-title: An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death publication-title: J. Biol. Chem. – volume: 149 start-page: 1773 year: 2009 ident: bib0275 article-title: Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis publication-title: Plant Physiol. – volume: 74 start-page: 235 year: 2010 ident: bib0090 article-title: A loss-of-function mutation in calmodulin2 gene affects pollen germination in Arabidopsis thaliana publication-title: Plant Mol. Biol. – volume: 55 start-page: 760 year: 2008 ident: bib0115 article-title: The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana publication-title: Plant J. – volume: 11 start-page: 165 year: 1997 end-page: 179 ident: bib0160 article-title: Postharvest handling and losses during marketing of papaya ( publication-title: Postharvest Biol. Techol. – volume: 1 start-page: 14057 year: 2014 ident: bib0250 article-title: Functional analysis of tomato calmodulin gene family during fruit development and ripening publication-title: Hortic. Res. – volume: 71 start-page: 976 year: 2012 end-page: 989 ident: bib0095 article-title: CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway publication-title: Plant J. – volume: 8 start-page: 482 year: 2017 ident: bib0110 article-title: Genome-wide identification and analyses of calmodulins and calmodulin-like proteins in lotus japonicas publication-title: Front. Plant Sci. – volume: 13 start-page: 70 year: 2013 ident: bib0285 article-title: Genome-wide identification and functional analyses of calmodulin genes in publication-title: BMC Plant Biol. – volume: 12 start-page: 19 year: 2012 ident: bib0255 article-title: Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening publication-title: BMC Plant Biol. – volume: 109 start-page: 38 year: 2014 end-page: 49 ident: bib0020 article-title: Ca(2+)-CaM regulating viability of publication-title: J. Proteom. – volume: 132 start-page: 1186 year: 2003 end-page: 1195 ident: bib0120 article-title: Calmodulin is involved in heat shock signal transduction in wheat publication-title: Plant Physiol. – volume: 102 start-page: 167 year: 2016 end-page: 179 ident: bib0150 article-title: Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato ( publication-title: Plant Physiol. Biol. Chem. – volume: 6 start-page: 31772 year: 2016 ident: bib0200 article-title: Overexpression of calmodulin-like (ShCML44) stress-responsive gene fromSolanum habrochaitesenhances tolerance to multiple abiotic stresses publication-title: Sci. Rep. – volume: 31 start-page: 1269 year: 2012 end-page: 1281 ident: bib0225 article-title: Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis publication-title: Plant Cell Rep. – volume: 7 start-page: 327 year: 2016 ident: bib0180 article-title: Calcium sensors as key hubs in plant responses to biotic and abiotic stresses publication-title: Front. Plant Sci. – volume: 48 start-page: 697 year: 2010 end-page: 702 ident: bib0015 article-title: Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress publication-title: Plant Physiol. Biol. Chem. – volume: 10 start-page: 383 year: 2005 end-page: 389 ident: bib0140 article-title: Handling calcium signaling: publication-title: Trends Plant Sci. – volume: 21 start-page: 985 year: 2011 ident: bib0210 article-title: Crosstalk in cellular signaling: background noise or the real thing? publication-title: Dev. Cell – volume: 144 start-page: 102 year: 2012 end-page: 115 ident: bib0005 article-title: The language of calcium in postharvest life of fruits, vegetables and flowers publication-title: Sci. Hortic. – volume: 279 start-page: 37291 year: 2004 end-page: 37297 ident: bib0030 article-title: Modulation of L-type calcium channels in drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway publication-title: J. Biol. Chem. – volume: 23 start-page: 2010 year: 2011 ident: bib0190 article-title: Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression publication-title: Plant Cell – volume: 9 start-page: e116002 year: 2014 ident: bib0265 article-title: The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury publication-title: Plos One – volume: 58 start-page: 307 year: 2017 end-page: 319 ident: bib0305 article-title: CML8, an Arabidopsis calmodulin-like protein, plays a role in publication-title: Plant Cell Physiol. – volume: 56 start-page: 575 year: 2008 end-page: 589 ident: bib0125 article-title: Mutations in AtCML9, a calmodulin-like protein from publication-title: Plant J. – volume: 93 start-page: 2048 year: 2011 end-page: 2053 ident: bib0170 article-title: Calmodulin and calmodulin-like proteins in plant calcium signaling publication-title: Biochimie – volume: 6 year: 2015 ident: bib0215 article-title: Abiotic stress responses in plants: roles of calmodulin-regulated proteins publication-title: Front. Plant Sci. – volume: 38 start-page: 2372 year: 2015 ident: bib0235 article-title: CML25 mediates the Ca( publication-title: Plant Cell Environ. – volume: 7 start-page: e44405 issue: 8 year: 2012 ident: 10.1016/j.postharvbio.2018.04.010_bib0295 article-title: Evaluation of New reference genes in papaya for accurate transcript normalization under different experimental conditions publication-title: Plos One doi: 10.1371/journal.pone.0044405 – volume: 279 start-page: 37291 issue: 36 year: 2004 ident: 10.1016/j.postharvbio.2018.04.010_bib0030 article-title: Modulation of L-type calcium channels in drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403819200 – volume: 34 start-page: 1112 issue: 6 year: 1999 ident: 10.1016/j.postharvbio.2018.04.010_bib0145 article-title: Irradiation, stage of maturity at harvest, and storage temperature during ripening affect papaya fruit quality publication-title: HortScience doi: 10.21273/HORTSCI.34.6.1112 – volume: 233 start-page: 593 issue: 3 year: 2011 ident: 10.1016/j.postharvbio.2018.04.010_bib0055 article-title: StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling publication-title: Planta doi: 10.1007/s00425-010-1319-2 – volume: 56 start-page: 575 issue: 4 year: 2008 ident: 10.1016/j.postharvbio.2018.04.010_bib0125 article-title: Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03622.x – volume: 5 start-page: 14578 year: 2015 ident: 10.1016/j.postharvbio.2018.04.010_bib0080 article-title: A calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter publication-title: Sci. Rep. doi: 10.1038/srep14578 – volume: 58 start-page: 307 issue: 2 year: 2017 ident: 10.1016/j.postharvbio.2018.04.010_bib0305 article-title: CML8, an Arabidopsis calmodulin-like protein, plays a role in Pseudomonas syringae plant immunity publication-title: Plant Cell Physiol. – volume: 31 start-page: 1269 issue: 7 year: 2012 ident: 10.1016/j.postharvbio.2018.04.010_bib0225 article-title: Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis publication-title: Plant Cell Rep. doi: 10.1007/s00299-012-1247-7 – volume: 7 start-page: 477 issue: 6 year: 1984 ident: 10.1016/j.postharvbio.2018.04.010_bib0050 article-title: Calcium in plant senescence and fruit ripening publication-title: Plant Cell Physiol. – volume: 70 start-page: 81 year: 2013 ident: 10.1016/j.postharvbio.2018.04.010_bib0100 article-title: Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.020 – volume: 5 start-page: 807 year: 2014 ident: 10.1016/j.postharvbio.2018.04.010_bib0280 article-title: Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-octanoyl homoserine lactone in Arabidopsis thaliana publication-title: Front. Plant Sci. – volume: 93 start-page: 2048 issue: 12 year: 2011 ident: 10.1016/j.postharvbio.2018.04.010_bib0170 article-title: Calmodulin and calmodulin-like proteins in plant calcium signaling publication-title: Biochimie doi: 10.1016/j.biochi.2011.07.012 – volume: 144 start-page: 102 year: 2012 ident: 10.1016/j.postharvbio.2018.04.010_bib0005 article-title: The language of calcium in postharvest life of fruits, vegetables and flowers publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2012.07.007 – volume: 223 start-page: 7 issue: 1 year: 1994 ident: 10.1016/j.postharvbio.2018.04.010_bib0220 article-title: A modified Hot borate method significantly enhances the yield of high-quality RNA from Cotton (Gossypium hirsutum L.) publication-title: Anal. Biochem. doi: 10.1006/abio.1994.1538 – volume: 275 start-page: 38467 issue: 49 year: 2000 ident: 10.1016/j.postharvbio.2018.04.010_bib0260 article-title: An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003566200 – volume: 48 start-page: 697 issue: 8 year: 2010 ident: 10.1016/j.postharvbio.2018.04.010_bib0015 article-title: Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress publication-title: Plant Physiol. Biol. Chem. doi: 10.1016/j.plaphy.2010.04.011 – volume: 128 start-page: 1169 issue: 4 year: 2002 ident: 10.1016/j.postharvbio.2018.04.010_bib0205 article-title: Calmodulin as a potential negative regulator of Arabidopsis COR gene expression publication-title: Plant Physiol. doi: 10.1104/pp.010814 – volume: 23 start-page: 2010 issue: 6 year: 2011 ident: 10.1016/j.postharvbio.2018.04.010_bib0190 article-title: Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression publication-title: Plant Cell doi: 10.1105/tpc.111.084988 – volume: 38 start-page: 2372 issue: 11 year: 2015 ident: 10.1016/j.postharvbio.2018.04.010_bib0235 article-title: Arabidopsis thaliana CML25 mediates the Ca(2+) regulation of K(+) transmembrane trafficking during pollen germination and tube elongation publication-title: Plant Cell Environ. doi: 10.1111/pce.12559 – volume: 7 start-page: 1056 issue: 9 year: 2012 ident: 10.1016/j.postharvbio.2018.04.010_bib0240 article-title: Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.) publication-title: Plant Signal. Behav. doi: 10.4161/psb.21124 – volume: 159 start-page: 585 issue: 3 year: 2003 ident: 10.1016/j.postharvbio.2018.04.010_bib0135 article-title: Calmodulins and related potential calcium sensors of Arabidopsis publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00845.x – volume: 102 start-page: 167 year: 2016 ident: 10.1016/j.postharvbio.2018.04.010_bib0150 article-title: Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum publication-title: Plant Physiol. Biol. Chem. doi: 10.1016/j.plaphy.2016.02.020 – volume: 359 start-page: 509 issue: 3 year: 2006 ident: 10.1016/j.postharvbio.2018.04.010_bib0060 article-title: Structural basis for diversity of the EF-hand calcium-binding proteins publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.03.066 – volume: 8 start-page: 482 year: 2017 ident: 10.1016/j.postharvbio.2018.04.010_bib0110 article-title: Genome-wide identification and analyses of calmodulins and calmodulin-like proteins in lotus japonicas publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00482 – volume: 9 start-page: e116002 issue: 12 year: 2014 ident: 10.1016/j.postharvbio.2018.04.010_bib0265 article-title: The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury publication-title: Plos One doi: 10.1371/journal.pone.0116002 – volume: 108 start-page: 739 issue: 6 year: 2002 ident: 10.1016/j.postharvbio.2018.04.010_bib0065 article-title: Calmodulin in action: diversity in target recognition and activation mechanisms publication-title: Cell doi: 10.1016/S0092-8674(02)00682-7 – volume: 120 start-page: 246 issue: 2 year: 1995 ident: 10.1016/j.postharvbio.2018.04.010_bib0175 article-title: Papaya fruit growth, calcium uptake, and fruit ripening publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.120.2.246 – volume: 6 start-page: 31772 year: 2016 ident: 10.1016/j.postharvbio.2018.04.010_bib0200 article-title: Overexpression of calmodulin-like (ShCML44) stress-responsive gene fromSolanum habrochaitesenhances tolerance to multiple abiotic stresses publication-title: Sci. Rep. doi: 10.1038/srep31772 – volume: 1 start-page: 14057 year: 2014 ident: 10.1016/j.postharvbio.2018.04.010_bib0250 article-title: Functional analysis of tomato calmodulin gene family during fruit development and ripening publication-title: Hortic. Res. doi: 10.1038/hortres.2014.57 – volume: 109 start-page: 38 year: 2014 ident: 10.1016/j.postharvbio.2018.04.010_bib0020 article-title: Ca(2+)-CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins publication-title: J. Proteom. doi: 10.1016/j.jprot.2014.06.022 – volume: 11 start-page: 165 issue: 3 year: 1997 ident: 10.1016/j.postharvbio.2018.04.010_bib0160 article-title: Postharvest handling and losses during marketing of papaya (Carica papaya L.) publication-title: Postharvest Biol. Techol. doi: 10.1016/S0925-5214(97)00028-8 – volume: 86 start-page: 437 issue: 4 year: 2013 ident: 10.1016/j.postharvbio.2018.04.010_bib0105 article-title: Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism publication-title: Postharvest Biol. Techol. doi: 10.1016/j.postharvbio.2013.07.037 – volume: 6 issue: 809 year: 2015 ident: 10.1016/j.postharvbio.2018.04.010_bib0215 article-title: Abiotic stress responses in plants: roles of calmodulin-regulated proteins publication-title: Front. Plant Sci. – volume: 6 start-page: 600 issue: 660 year: 2015 ident: 10.1016/j.postharvbio.2018.04.010_bib0270 article-title: Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses publication-title: Front. Plant Sci. – volume: 92 start-page: 240 issue: 3 year: 2017 ident: 10.1016/j.postharvbio.2018.04.010_bib0230 article-title: MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses publication-title: J. Hortic. Sci. Biotechol. doi: 10.1080/14620316.2016.1265902 – volume: 10 start-page: 383 issue: 8 year: 2005 ident: 10.1016/j.postharvbio.2018.04.010_bib0140 article-title: Handling calcium signaling: Arabidopsis CaMs and CMLs publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.07.001 – year: 2006 ident: 10.1016/j.postharvbio.2018.04.010_bib0040 – volume: 268 start-page: 3916 issue: 14 year: 2001 ident: 10.1016/j.postharvbio.2018.04.010_bib0245 article-title: Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2001.02301.x – volume: 4 start-page: 1123 issue: 9 year: 1992 ident: 10.1016/j.postharvbio.2018.04.010_bib0185 article-title: Calcium requirement for ethylene-dependent responses publication-title: Plant Cell doi: 10.1105/tpc.4.9.1123 – volume: 44 start-page: 1306 issue: 5 year: 2011 ident: 10.1016/j.postharvbio.2018.04.010_bib0075 article-title: Papaya: nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview publication-title: Food Res. Int. doi: 10.1016/j.foodres.2010.12.035 – volume: 7 start-page: 327 issue: 25 year: 2016 ident: 10.1016/j.postharvbio.2018.04.010_bib0180 article-title: Calcium sensors as key hubs in plant responses to biotic and abiotic stresses publication-title: Front. Plant Sci. – volume: 21 start-page: 985 issue: 6 year: 2011 ident: 10.1016/j.postharvbio.2018.04.010_bib0210 article-title: Crosstalk in cellular signaling: background noise or the real thing? publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.11.006 – volume: 132 start-page: 1186 issue: 3 year: 2003 ident: 10.1016/j.postharvbio.2018.04.010_bib0120 article-title: Calmodulin is involved in heat shock signal transduction in wheat publication-title: Plant Physiol. doi: 10.1104/pp.102.018564 – volume: 12 start-page: 19 issue: 1 year: 2012 ident: 10.1016/j.postharvbio.2018.04.010_bib0255 article-title: Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-19 – volume: 20 start-page: 483 issue: 8 year: 2015 ident: 10.1016/j.postharvbio.2018.04.010_bib0290 article-title: CaM and CML emergence in the green lineage publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.05.010 – volume: 13 start-page: 70 issue: 1 year: 2013 ident: 10.1016/j.postharvbio.2018.04.010_bib0285 article-title: Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-70 – volume: 149 start-page: 1773 issue: 4 year: 2009 ident: 10.1016/j.postharvbio.2018.04.010_bib0275 article-title: Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.133744 – volume: 3 start-page: 427 issue: 3 year: 2014 ident: 10.1016/j.postharvbio.2018.04.010_bib0165 article-title: Calmodulin Gene expression in response to mechanical wounding and botrytiscinerea infection in tomato fruit publication-title: Plants doi: 10.3390/plants3030427 – volume: 55 start-page: 6118 issue: 15 year: 2007 ident: 10.1016/j.postharvbio.2018.04.010_bib0045 article-title: Papaya fruit ripening: response to ethylene and 1-methylcyclopropene (1-MCP) publication-title: J. Agric. Food Chem. doi: 10.1021/jf070903c – volume: 71 start-page: 976 issue: 6 year: 2012 ident: 10.1016/j.postharvbio.2018.04.010_bib0095 article-title: CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway publication-title: Plant J. doi: 10.1111/j.1365-313X.2012.05045.x – volume: 47 start-page: 543 issue: 6 year: 2007 ident: 10.1016/j.postharvbio.2018.04.010_bib0130 article-title: Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408390600846390 – volume: 26 start-page: 143 issue: 2 year: 2007 ident: 10.1016/j.postharvbio.2018.04.010_bib0025 article-title: Ethylene and fruit ripening publication-title: J. Plant. Growth Regul. doi: 10.1007/s00344-007-9002-y – volume: 35 start-page: 3612 issue: 11 year: 2007 ident: 10.1016/j.postharvbio.2018.04.010_bib0155 article-title: Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm273 – volume: 55 start-page: 760 issue: 5 year: 2008 ident: 10.1016/j.postharvbio.2018.04.010_bib0115 article-title: The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03544.x – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.postharvbio.2018.04.010_bib0085 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 121 start-page: 705 issue: 3 year: 1999 ident: 10.1016/j.postharvbio.2018.04.010_bib0010 article-title: Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco publication-title: Plant Physiol. doi: 10.1104/pp.121.3.705 – volume: 74 start-page: 235 issue: 3 year: 2010 ident: 10.1016/j.postharvbio.2018.04.010_bib0090 article-title: A loss-of-function mutation in calmodulin2 gene affects pollen germination in Arabidopsis thaliana publication-title: Plant Mol. Biol. doi: 10.1007/s11103-010-9669-5 – volume: 67 start-page: 3985 issue: 13 year: 2016 ident: 10.1016/j.postharvbio.2018.04.010_bib0195 article-title: The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw101 – volume: 7 start-page: 4 issue: 1 year: 2007 ident: 10.1016/j.postharvbio.2018.04.010_bib0035 article-title: Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins publication-title: BMC. Plant Biol. doi: 10.1186/1471-2229-7-4 – start-page: e1322246 year: 2017 ident: 10.1016/j.postharvbio.2018.04.010_bib0300 article-title: Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2017.1322246 – volume: 25 start-page: 241 issue: 3 year: 2002 ident: 10.1016/j.postharvbio.2018.04.010_bib0070 article-title: Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Persea americana) fruit publication-title: Postharvest Biol. Technol. doi: 10.1016/S0925-5214(01)00184-3 |
| SSID | ssj0005558 |
| Score | 2.400524 |
| Snippet | •41 CaM and CML proteins were identified in the papaya genome.•Bioinformatics analysis showed that they were typical CaM and CML in plant.•Expression analysis... Calcium (Ca2+) is an important second messenger involved in diverse developmental and adaptive processes in plants. Calmodulin (CaM) and calmodulin-like (CML)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | 1-methylcyclopropene calcium Calcium ions Calcium-binding protein Calmodulin Calmodulin-like protein cold stress Developmental stages EF-hand ethephon ethylene Fruit ripening fruiting Fruits Gene expression Gene families Genes Genomes High temperature Light effects Low temperature Nucleotide sequence Papaya Phylogeny Plant growth promoter regions Proteins Ripening sequence alignment sequence diversity Storage conditions Stress response Stresses temperature Temperature effects Transcription transcription (genetics) |
| Title | Genome-wide identification and expression analyses of the calmodulin and calmodulin-like proteins reveal their involvement in stress response and fruit ripening in papaya |
| URI | https://dx.doi.org/10.1016/j.postharvbio.2018.04.010 https://www.proquest.com/docview/2083808122 https://www.proquest.com/docview/2237554771 |
| Volume | 143 |
| WOSCitedRecordID | wos000433225900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2356 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005558 issn: 0925-5214 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhA8IL4mCgN5EuKlytQ6TWNLvFTQ8aGp8NCh8hQ5ib1mdEnp2q78S_xr_BPc2U6abRoaD7xE-bCTKPfL-Xy--x0hr7iMezLpMk_D-ObhwpwXs7TnyR5jWgsMb9Km2EQ4HPLxWHxpNH6XuTCraZjnfL0Ws_8qajgHwsbU2X8Qd3VTOAH7IHTYgthheyPBv1d5caq88yxVrSx1wUBWzOgkV2sX-oqHSEhiWWfR_gRxnRapCU032W7VoTfNvmNCVYGlMXGdYYV0xHaNIctBwRnScVNswOWezG3orV2b0PNltmiBdlK5y6CZwRD9U9YNYywaPJFzJP1o1YmhFldc_-9cFZZxJotksqzAXbm-YXoNTzre6FbjDf4m83OVlSexs3H8TpYSE5ldc-f-6PAqvsv55Kq8nK913yYLYIZts1P3ldXsPPQ95lsW80r1d_2a8rZJsVfGFOveONmfuQ8BHwFDArmhyHUxuRd4vIefo4Ojw8NoNBiPXs9-eFjiDEMBXL2XW2SbhYEAFbzd_zgYf9pEJAWmnGz19nfI3iYc8ZqnX2dOXTIsjLU0ekDuu2kO7Vt4PiQNlT8i9_rHc0f1ouCoRoX5mPyqwZZehC0FHNANbGkJW1poChikG5yalpdgS0vYUgtbamBLa7CFfWphS0vYmhsZ2NISttjKwvYJOToYjN5-8FwdES_xOVt4QnEd95TkPZlKLlIl_FiIRAgtVKC7vKN9hXzdoUphOqC5iKVOwBKXiVTaTwJ_h2zlRa6eEor2AbRP_MDUYpBxDMZEGnCm223dCXpNwktxRIkj2cdaL9OojKY8iWqSjFCSUbsbgSSbhFVdZ5Zp5iad3pQyj5zJbE3hCNB7k-67JU4ip8LO4Dr3sR4PY02yV12GUQeXEmWuiiW0YX4IE5Ew7Dz7-y2ek7ubv3aXbC3mS_WC3E5Wi-xs_tL9AX8ABvII9g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+identification+and+expression+analyses+of+the+calmodulin+and+calmodulin-like+proteins+reveal+their+involvement+in+stress+response+and+fruit+ripening+in+papaya&rft.jtitle=Postharvest+biology+and+technology&rft.au=Ding%2C+Xiaochun&rft.au=Zhang%2C+Linpeng&rft.au=Hao%2C+Yanwei&rft.au=Xiao%2C+Shuangling&rft.date=2018-09-01&rft.pub=Elsevier+BV&rft.issn=0925-5214&rft.eissn=1873-2356&rft.volume=143&rft.spage=13&rft_id=info:doi/10.1016%2Fj.postharvbio.2018.04.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5214&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5214&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5214&client=summon |