DC formulations and algorithms for sparse optimization problems
We propose a DC (Difference of two Convex functions) formulation approach for sparse optimization problems having a cardinality or rank constraint. With the largest- k norm, an exact DC representation of the cardinality constraint is provided. We then transform the cardinality-constrained problem in...
Saved in:
| Published in: | Mathematical programming Vol. 169; no. 1; pp. 141 - 176 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a DC (Difference of two Convex functions) formulation approach for sparse optimization problems having a cardinality or rank constraint. With the largest-
k
norm, an exact DC representation of the cardinality constraint is provided. We then transform the cardinality-constrained problem into a penalty function form and derive exact penalty parameter values for some optimization problems, especially for quadratic minimization problems which often appear in practice. A DC Algorithm (DCA) is presented, where the dual step at each iteration can be efficiently carried out due to the accessible subgradient of the largest-
k
norm. Furthermore, we can solve each DCA subproblem in linear time via a soft thresholding operation if there are no additional constraints. The framework is extended to the rank-constrained problem as well as the cardinality- and the rank-minimization problems. Numerical experiments demonstrate the efficiency of the proposed DCA in comparison with existing methods which have other penalty terms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-017-1181-0 |