Optimal design of experiments via linear programming

We investigate the possibility of extending some results of Pázman and Pronzato (Ann Stat 42(4):1426–1451, 2014 ) to a larger set of optimality criteria. Namely, the problems of computing D -, A -, and E k -optimal designs in a linear regression model are reformulated here as “infinite-dimensional”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Jg. 57; H. 4; S. 893 - 910
Hauptverfasser: Burclova, Katarina, Pazman, Andrej
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2016
Springer Nature B.V
Schlagworte:
ISSN:0932-5026, 1613-9798
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the possibility of extending some results of Pázman and Pronzato (Ann Stat 42(4):1426–1451, 2014 ) to a larger set of optimality criteria. Namely, the problems of computing D -, A -, and E k -optimal designs in a linear regression model are reformulated here as “infinite-dimensional” linear programming problems. The same approach is applied to combination of these optimality criteria and to the “criterion robust” problem of Harman (Metrika 60:137–153, 2004 ). Approximate optimum designs can then be computed by a relaxation method (Shimizu and Aiyoshi in IEEE Trans Autom Control 25(1):62–66, 1980 ), and this is illustrated on various examples.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0932-5026
1613-9798
DOI:10.1007/s00362-016-0782-7