Novel binary walrus optimization algorithms BWaOA and BWaOA-C with crossover operator for feature selection in high-dimensional data

Abstract Redundant and irrelevant features in high-dimensional datasets hinder the development of efficient machine learning models. Most existing Feature Selection (FS) algorithms are developed based on either embedded or filter techniques, which makes it challenging to identify the highly discrimi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discover Computing Ročník 28; číslo 1; s. 1 - 45
Hlavní autoři: Farid Ayeche, Adel Alti
Médium: Journal Article
Jazyk:angličtina
Vydáno: Springer 27.10.2025
Témata:
ISSN:2948-2992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Redundant and irrelevant features in high-dimensional datasets hinder the development of efficient machine learning models. Most existing Feature Selection (FS) algorithms are developed based on either embedded or filter techniques, which makes it challenging to identify the highly discriminant features due to limited search capability and high computational cost. To overcome these challenges, we propose a novel wrapper-based FS framework built on the Walrus Optimization Algorithm (WaOA) to balance accuracy and efficiency. The key novelties of our framework include two advanced binarization strategies: Binary WaOA (BWaOA), which uses S- and V-shaped transfer functions for effective search space discretization, and Binary WaOA-Crossover (BWaOA-C), which incorporates crossover operators to improve exploration, diversity, and refinement. Unlike conventional approaches, our methods systematically combine adaptive transfer functions and dynamic thresholding to select compact yet highly discriminative feature subsets, evaluated using a K-Nearest Neighbors (KNN) classifier. Extensive experiments on 30 benchmark datasets demonstrate the superiority of the proposed framework against 12 state-of-the-art FS algorithms, including GA, PSO, HHO, GWO, ChOA, BDE, WOA, AMGWO, BTLBO-KNN, HLBDA, BABC, and RGA-T. BWaOA achieves 86.33% feature reduction and 92.56% classification accuracy, while BWaOA-C further improves accuracy by up to 7%. These findings demonstrate the robustness and practical effectiveness of the proposed framework for high-dimensional data analysis.
AbstractList Abstract Redundant and irrelevant features in high-dimensional datasets hinder the development of efficient machine learning models. Most existing Feature Selection (FS) algorithms are developed based on either embedded or filter techniques, which makes it challenging to identify the highly discriminant features due to limited search capability and high computational cost. To overcome these challenges, we propose a novel wrapper-based FS framework built on the Walrus Optimization Algorithm (WaOA) to balance accuracy and efficiency. The key novelties of our framework include two advanced binarization strategies: Binary WaOA (BWaOA), which uses S- and V-shaped transfer functions for effective search space discretization, and Binary WaOA-Crossover (BWaOA-C), which incorporates crossover operators to improve exploration, diversity, and refinement. Unlike conventional approaches, our methods systematically combine adaptive transfer functions and dynamic thresholding to select compact yet highly discriminative feature subsets, evaluated using a K-Nearest Neighbors (KNN) classifier. Extensive experiments on 30 benchmark datasets demonstrate the superiority of the proposed framework against 12 state-of-the-art FS algorithms, including GA, PSO, HHO, GWO, ChOA, BDE, WOA, AMGWO, BTLBO-KNN, HLBDA, BABC, and RGA-T. BWaOA achieves 86.33% feature reduction and 92.56% classification accuracy, while BWaOA-C further improves accuracy by up to 7%. These findings demonstrate the robustness and practical effectiveness of the proposed framework for high-dimensional data analysis.
Author Farid Ayeche
Adel Alti
Author_xml – sequence: 1
  fullname: Farid Ayeche
  organization: LMETR Laboratory, Department of Technology, University Ferhat Abbas Setif 1
– sequence: 2
  fullname: Adel Alti
  organization: Department of Management Information Systems, College of Business and Economics, Qassim University
BookMark eNotj0tLAzEUhYMo-OofcJU_EM2zmSxr8VEoulFcDjevNjIzkWS06Nof7mhdXM7lHM4H5xQdDnkICF0wesko1VeVUW0YoVwRavRck68DdMKNbAg3hh-jWa3JUiW04HNKT9D3Q_4IHbZpgPKJd9CV94rz25j69AVjygOGbpNLGrd9xdcv8LjAMPj9R5Z4NwXYlVzrhClTMRQYc8Hx9wKM7yXgGrrg_lBpwNu02RKf-jDUyYEOexjhHB1F6GqY_esZer69eVrek_Xj3Wq5WBMnGj4SpRUHFqWM0zwmPfU-OuuUiM4pK6R2XmsbHOdi7plzIsjIqZKB-WCYcOIMrfZcn-G1fSupn0a3GVL7Z-SyaaGMyXWhDcqClDoaQ6M0Qhst5swG1chGWEtB_ABg7nNZ
ContentType Journal Article
DBID DOA
DOI 10.1007/s10791-025-09767-z
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2948-2992
EndPage 45
ExternalDocumentID oai_doaj_org_article_e5ba447f990f493797361be58483bb0a
GroupedDBID AAJSJ
AASML
ABDBE
AEFQL
ALMA_UNASSIGNED_HOLDINGS
EBLON
GROUPED_DOAJ
JZLTJ
SOJ
ID FETCH-LOGICAL-c382t-5752a1f44f02514d0ddfcbc53fcc5b347cd77bec2236d1cc3e4f2054e1de913c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001599879200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Mon Nov 10 19:20:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-5752a1f44f02514d0ddfcbc53fcc5b347cd77bec2236d1cc3e4f2054e1de913c3
OpenAccessLink https://doaj.org/article/e5ba447f990f493797361be58483bb0a
PageCount 45
ParticipantIDs doaj_primary_oai_doaj_org_article_e5ba447f990f493797361be58483bb0a
PublicationCentury 2000
PublicationDate 2025-10-27
PublicationDateYYYYMMDD 2025-10-27
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-27
  day: 27
PublicationDecade 2020
PublicationTitle Discover Computing
PublicationYear 2025
Publisher Springer
Publisher_xml – name: Springer
SSID ssib053732600
Score 2.4014647
Snippet Abstract Redundant and irrelevant features in high-dimensional datasets hinder the development of efficient machine learning models. Most existing Feature...
SourceID doaj
SourceType Open Website
StartPage 1
SubjectTerms Binary walrus optimization algorithm
Classification
Feature selection
K-Nearest neighbor
Machine learning
Title Novel binary walrus optimization algorithms BWaOA and BWaOA-C with crossover operator for feature selection in high-dimensional data
URI https://doaj.org/article/e5ba447f990f493797361be58483bb0a
Volume 28
WOSCitedRecordID wos001599879200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCQIB4FOSB1SJ-JI7HtqJiQIWBR7cofkGlNkFNWyRmfjhnJ0OZWBgiRZHOkXy2v--Su-8QulZGax42Emd5QgTPFCmlsnAYKiD4RmoTK-Re7uVkkk-n6nGr1VfICWvlgduJu3GpLoWQHk5NLwBLleQZ1Q5wM-daJ5EaJVJtBVOwklIueVBe76pkulo5GZJ8WEoSgGBJvn6p9Ec4GR-g_Y4H4kH7_kO046oj9D2pN26OdayRxZ_lfLlucA2betFVS-Jy_lZDOP--aPDwtXwY4LKy7R0Z4fBNFUfYC3mZYOjiP3Tsw-WigiduYt-bMNSswkGrmNig799qc-CQL3qMnse3T6M70rVJIIbnbEWAcLGSeiF8iBeETaz1RpuUe2NSzYU0VkpwFRCBzFJjuBOeAVNz1DpFueEnqFfVlTtFGIwS56mm2nuRp0znNgNLSr3OtRH2DA3DlBUfrRJGEbSp4wPwWNF5rPjLY-f_McgF2mPBl4AiTPZRb7Vcu0u0azarWbO8iovhB2RvvHw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+binary+walrus+optimization+algorithms+BWaOA+and+BWaOA-C+with+crossover+operator+for+feature+selection+in+high-dimensional+data&rft.jtitle=Discover+Computing&rft.au=Farid+Ayeche&rft.au=Adel+Alti&rft.date=2025-10-27&rft.pub=Springer&rft.eissn=2948-2992&rft.volume=28&rft.issue=1&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1007%2Fs10791-025-09767-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5ba447f990f493797361be58483bb0a