Polynomial combinatorial algorithms for skew-bisubmodular function minimization
Huber et al. (SIAM J Comput 43:1064–1084, 2014 ) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (SIAM J Discrete Math 28:1828–18...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 171; číslo 1-2; s. 87 - 114 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Huber et al. (SIAM J Comput 43:1064–1084,
2014
) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (SIAM J Discrete Math 28:1828–1837,
2014
) showed the oracle tractability of minimization of skew-bisubmodular functions. Fujishige et al. (Discrete Optim 12:1–9,
2014
) also showed a min–max theorem that characterizes the skew-bisubmodular function minimization, but devising a combinatorial polynomial algorithm for skew-bisubmodular function minimization was left open. In the present paper we give first combinatorial (weakly and strongly) polynomial algorithms for skew-bisubmodular function minimization. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-017-1171-2 |