Polynomial combinatorial algorithms for skew-bisubmodular function minimization

Huber et al. (SIAM J Comput 43:1064–1084, 2014 ) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (SIAM J Discrete Math 28:1828–18...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 171; číslo 1-2; s. 87 - 114
Hlavní autoři: Fujishige, Satoru, Tanigawa, Shin-ichi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2018
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Huber et al. (SIAM J Comput 43:1064–1084, 2014 ) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (SIAM J Discrete Math 28:1828–1837, 2014 ) showed the oracle tractability of minimization of skew-bisubmodular functions. Fujishige et al. (Discrete Optim 12:1–9, 2014 ) also showed a min–max theorem that characterizes the skew-bisubmodular function minimization, but devising a combinatorial polynomial algorithm for skew-bisubmodular function minimization was left open. In the present paper we give first combinatorial (weakly and strongly) polynomial algorithms for skew-bisubmodular function minimization.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-017-1171-2