No sublogarithmic-time approximation scheme for bipartite vertex cover
König’s theorem states that on bipartite graphs the size of a maximum matching equals the size of a minimum vertex cover. It is known from prior work that for every ϵ > 0 there exists a constant-time distributed algorithm that finds a ( 1 + ϵ ) -approximation of a maximum matching on bounded-degr...
Uloženo v:
| Vydáno v: | Distributed computing Ročník 27; číslo 6; s. 435 - 443 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-2770, 1432-0452 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | König’s theorem states that on bipartite graphs the size of a maximum matching equals the size of a minimum vertex cover. It is known from prior work that for every
ϵ
>
0
there exists a
constant-time
distributed algorithm that finds a
(
1
+
ϵ
)
-approximation of a maximum matching on bounded-degree graphs. In this work, we show—somewhat surprisingly—that no
sublogarithmic-time
approximation scheme exists for the dual problem: there is a constant
δ
>
0
so that no randomised distributed algorithm with running time
o
(
log
n
)
can find a
(
1
+
δ
)
-approximation of a minimum vertex cover on 2-coloured graphs of maximum degree 3. In fact, a simple application of the Linial–Saks (Combinatorica 13:441–454,
1993
) decomposition demonstrates that this run-time lower bound is tight. Our lower-bound construction is simple and, to some extent, independent of previous techniques. Along the way we prove that a certain cut minimisation problem, which might be of independent interest, is hard to approximate locally on expander graphs. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0178-2770 1432-0452 |
| DOI: | 10.1007/s00446-013-0194-z |