Efficient PINNs via multi-head unimodular regularization of the solutions space
Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential eq...
Saved in:
| Published in: | Communications physics Vol. 8; no. 1; pp. 335 - 14 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
15.08.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2399-3650, 2399-3650 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called
multi-head
(MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.
Physics-Informed Neural Networks (PINNs) face challenges in generalizing solutions for nonlinear multiscale differential equations and inverse problems. Here, the authors employ a framework of multihead training with unimodular regularization, to enhance PINN efficiency and enable effective transfer learning in case of systems, including the flame equation, van der Pol oscillator, and Einstein Field Equations. |
|---|---|
| AbstractList | Abstract Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations. Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.Physics-Informed Neural Networks (PINNs) face challenges in generalizing solutions for nonlinear multiscale differential equations and inverse problems. Here, the authors employ a framework of multihead training with unimodular regularization, to enhance PINN efficiency and enable effective transfer learning in case of systems, including the flame equation, van der Pol oscillator, and Einstein Field Equations. Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations. Physics-Informed Neural Networks (PINNs) face challenges in generalizing solutions for nonlinear multiscale differential equations and inverse problems. Here, the authors employ a framework of multihead training with unimodular regularization, to enhance PINN efficiency and enable effective transfer learning in case of systems, including the flame equation, van der Pol oscillator, and Einstein Field Equations. Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations. |
| ArticleNumber | 335 |
| Author | Protopapas, Pavlos Jimenez, Raul Tarancón-Álvarez, Pedro Tejerina-Pérez, Pablo |
| Author_xml | – sequence: 1 givenname: Pedro orcidid: 0009-0004-5774-231X surname: Tarancón-Álvarez fullname: Tarancón-Álvarez, Pedro email: pedro.tarancon@fqa.ub.edu organization: Departament de Física Quántica i Astrofísica, Universitat de Barcelona, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona – sequence: 2 givenname: Pablo orcidid: 0009-0003-7249-9023 surname: Tejerina-Pérez fullname: Tejerina-Pérez, Pablo email: pablo.tejerina@icc.ub.edu organization: Departament de Física Quántica i Astrofísica, Universitat de Barcelona, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona – sequence: 3 givenname: Raul orcidid: 0000-0002-3370-3103 surname: Jimenez fullname: Jimenez, Raul organization: Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Institució Catalana de Recerca i Estudis Avançats, ICREA – sequence: 4 givenname: Pavlos surname: Protopapas fullname: Protopapas, Pavlos organization: Institute for Applied Computational Science, Harvard University |
| BookMark | eNp9UU1LxTAQDKLg5x_wFPBc3SRtkx5F_Hgg6kHPIba7zzz6mmfSCvrrba2oJw_LbMLMbLKzz7a70CFjxwJOBShzlnIJUGQgp5K5ycQW25OqqjJVFrD9p99lRymtAECKHLQq99j9JZGvPXY9f1jc3SX-5h1fD23vsxd0DR86vw7N0LrIIy4n9B-u96HjgXj_gjyFdpjOiaeNq_GQ7ZBrEx594wF7urp8vLjJbu-vFxfnt1mtjOwzmVcFggE0iqRAoRvKFRUaZWPIgSYtTCMQx-9RqV2tpDJYSVOTQ01I6oAtZt8muJXdRL928d0G5-3XRYhL62Lv6xZtoUFXRGUjn2VeNlSRVg4qyGFcybMsR6-T2WsTw-uAqberMMRufL5V0-pUqaQeWXJm1TGkFJF-pgqwUw52zsGOOdivHKwYRWoWpZHcLTH-Wv-j-gSegIu2 |
| Cites_doi | 10.1109/ICDM58522.2023.00065 10.48550/arXiv.1908.02729 10.48550/arXiv.2311.14931 10.1007/JHEP08(2018)034 10.1103/PhysRevD.78.086007 10.1016/j.neunet.2024.106826 10.48550/arXiv.2010.15201 10.1038/s42254-021-00314-5 10.1016/j.jcp.2018.08.029 10.21105/joss.01931 10.48550/arXiv.2211.00214 10.1016/j.jcp.2018.10.045 10.48550/arXiv.2310.17053 10.1016/j.engappai.2023.107324 10.48550/arXiv.2111.08410 10.48550/arXiv.2301.02152 10.1109/TMAG.2023.3247023 10.48550/arXiv.2301.07641 10.1038/s42256-021-00302-5 10.1007/JHEP07(2024)087 10.1109/TNNLS.2019.2919705 10.1137/19M1274067 10.1016/j.jcp.2019.05.024 10.48550/arXiv.1906.01563 10.1002/cnm.1640100303 10.1155/2014/787412 10.48550/arXiv.2010.08895 10.1007/978-3-642-05221-7 10.48550/arXiv.2007.04216 10.48550/arXiv.2110.11286 10.1103/PhysRevE.101.062207 10.48550/arXiv.2407.10836 10.48550/arXiv.2501.17281 10.1103/PhysRevE.105.065305 10.1088/1361-6382/aca386 10.1016/j.cma.2024.117628 10.1090/S0002-9904-1955-09934-8 10.1109/72.870037 10.48550/arXiv.2006.14372 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.1038/s42005-025-02248-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database (ProQuest) Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2399-3650 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_57079ff6d2b246df9f73a09040365b26 10_1038_s42005_025_02248_1 |
| GroupedDBID | 0R~ 88I AAFWJ AAJSJ AARCD AASML ABDBF ABJCF ABUWG ACGFS ACUHS ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BGLVJ C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ M2P M7S M~E NAO O9- OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RNT SNYQT AAYXX AFFHD CITATION 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQQKQ PQUKI PUEGO Q9U |
| ID | FETCH-LOGICAL-c382t-2495e080e83f21e17df43f57e2d8fa07f718d1ee038f67ac3238e928cfae7fef3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001550331800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2399-3650 |
| IngestDate | Mon Nov 10 04:32:34 EST 2025 Sat Aug 23 13:00:29 EDT 2025 Sat Nov 29 07:35:33 EST 2025 Sat Aug 16 01:10:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-2495e080e83f21e17df43f57e2d8fa07f718d1ee038f67ac3238e928cfae7fef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-5774-231X 0000-0002-3370-3103 0009-0003-7249-9023 |
| OpenAccessLink | https://doaj.org/article/57079ff6d2b246df9f73a09040365b26 |
| PQID | 3239936327 |
| PQPubID | 4669724 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_57079ff6d2b246df9f73a09040365b26 proquest_journals_3239936327 crossref_primary_10_1038_s42005_025_02248_1 springer_journals_10_1038_s42005_025_02248_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-15 |
| PublicationDateYYYYMMDD | 2025-08-15 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Communications physics |
| PublicationTitleAbbrev | Commun Phys |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 2248_CR9 M Khalique (2248_CR2) 2014; 2014 J Sirignano (2248_CR31) 2018; 375 2248_CR4 2248_CR3 P Kaul (2248_CR14) 2020; 31 M Mattheakis (2248_CR30) 2022; 105 Y Bea (2248_CR39) 2024; 07 2248_CR26 GE Karniadakis (2248_CR7) 2021; 3 2248_CR25 L Lu (2248_CR8) 2021; 3 2248_CR22 2248_CR23 2248_CR21 I Lagaris (2248_CR29) 2000; 11 F Chen (2248_CR5) 2020; 5 JD Lambert (2248_CR12) 1991 A Choudhary (2248_CR33) 2019; 101 M Berardi (2248_CR24) 2025; 435 E Pinney (2248_CR1) 1955; 61 M Baldan (2248_CR27) 2023; 59 SS Gubser (2248_CR41) 2008; 78 2248_CR15 E Cardoso-Bihlo (2248_CR20) 2025; 181 2248_CR16 2248_CR38 2248_CR35 2248_CR36 2248_CR11 R Carballo-Rubio (2248_CR37) 2022; 39 M Raissi (2248_CR13) 2019; 378 2248_CR34 Y Bea (2248_CR40) 2018; 08 2248_CR10 Y Zhu (2248_CR32) 2019; 394 F Sahli Costabal (2248_CR19) 2024; 127 M Dissanayake (2248_CR28) 1994; 10 2248_CR17 2248_CR18 L Lu (2248_CR6) 2021; 63 |
| References_xml | – ident: 2248_CR17 doi: 10.1109/ICDM58522.2023.00065 – ident: 2248_CR38 doi: 10.48550/arXiv.1908.02729 – ident: 2248_CR25 doi: 10.48550/arXiv.2311.14931 – volume: 08 start-page: 034 year: 2018 ident: 2248_CR40 publication-title: JHEP doi: 10.1007/JHEP08(2018)034 – volume: 78 start-page: 086007 year: 2008 ident: 2248_CR41 publication-title: Phys. Rev. D. doi: 10.1103/PhysRevD.78.086007 – volume: 181 start-page: 106826 year: 2025 ident: 2248_CR20 publication-title: Neural Netw. doi: 10.1016/j.neunet.2024.106826 – ident: 2248_CR34 doi: 10.48550/arXiv.2010.15201 – volume: 3 start-page: 422 year: 2021 ident: 2248_CR7 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 375 start-page: 1339 year: 2018 ident: 2248_CR31 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – volume: 5 start-page: 1931 year: 2020 ident: 2248_CR5 publication-title: J. Open Source Softw. doi: 10.21105/joss.01931 – ident: 2248_CR26 doi: 10.48550/arXiv.2211.00214 – volume-title: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem year: 1991 ident: 2248_CR12 – volume: 378 start-page: 686 year: 2019 ident: 2248_CR13 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – ident: 2248_CR18 doi: 10.48550/arXiv.2310.17053 – volume: 127 start-page: 107324 year: 2024 ident: 2248_CR19 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107324 – ident: 2248_CR15 doi: 10.48550/arXiv.2111.08410 – ident: 2248_CR21 doi: 10.48550/arXiv.2301.02152 – volume: 59 start-page: 1 year: 2023 ident: 2248_CR27 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2023.3247023 – ident: 2248_CR36 doi: 10.48550/arXiv.2301.07641 – volume: 3 start-page: 218 year: 2021 ident: 2248_CR8 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00302-5 – volume: 07 start-page: 087 year: 2024 ident: 2248_CR39 publication-title: JHEP doi: 10.1007/JHEP07(2024)087 – volume: 31 start-page: 1410 year: 2020 ident: 2248_CR14 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2919705 – volume: 63 start-page: 208 year: 2021 ident: 2248_CR6 publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 394 start-page: 56 year: 2019 ident: 2248_CR32 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – ident: 2248_CR35 doi: 10.48550/arXiv.1906.01563 – volume: 10 start-page: 195 year: 1994 ident: 2248_CR28 publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1640100303 – volume: 2014 start-page: 1 year: 2014 ident: 2248_CR2 publication-title: Math. Probl. Eng. doi: 10.1155/2014/787412 – ident: 2248_CR9 doi: 10.48550/arXiv.2010.08895 – ident: 2248_CR3 – ident: 2248_CR10 doi: 10.1007/978-3-642-05221-7 – ident: 2248_CR16 doi: 10.48550/arXiv.2007.04216 – ident: 2248_CR22 doi: 10.48550/arXiv.2110.11286 – volume: 101 start-page: 062207 year: 2019 ident: 2248_CR33 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.062207 – ident: 2248_CR23 doi: 10.48550/arXiv.2407.10836 – ident: 2248_CR11 doi: 10.48550/arXiv.2501.17281 – volume: 105 start-page: 065305 year: 2022 ident: 2248_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.105.065305 – volume: 39 start-page: 243001 year: 2022 ident: 2248_CR37 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aca386 – volume: 435 start-page: 117628 year: 2025 ident: 2248_CR24 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117628 – volume: 61 start-page: 373 year: 1955 ident: 2248_CR1 publication-title: Bull. N. Ser. Am. Math. Soc. doi: 10.1090/S0002-9904-1955-09934-8 – volume: 11 start-page: 1041 year: 2000 ident: 2248_CR29 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870037 – ident: 2248_CR4 doi: 10.48550/arXiv.2006.14372 |
| SSID | ssj0002140736 |
| Score | 2.307277 |
| Snippet | Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle... Abstract Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 335 |
| SubjectTerms | 639/705/1042 639/766/259 Accuracy Algorithms Boundary conditions Einstein equations Geometry Inverse problems Linear equations Machine learning Neural networks Nonlinear differential equations Numerical analysis Ordinary differential equations Physics Physics and Astronomy Regularization |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ74TLz4Nq6vcPCmRIG20JNRo_Hi6kETb4QWxnjZ1Xb19zuw3TWa6MVr2xDKN8yDGb4BOJTClyF3ggcvAs-MVJxCMM-NKwTKSpNJc6nZhO73zdNTed8duLVdWeVEJyZF7Yd1PCM_UfESpiqU1Gevbzx2jYrZ1a6FxizMk2cjYknXrbyfnrFIih50zE7ujG-Xm5M2S9SbsYdrNF4UQH2zR4m2_5uv-SM9mqzO9cp_57sKy52_yc7HArIGM2GwDoup7rNuN-DuKlFIkOVhFN_3W_bx4lgqMuSkpT17HxCWPpaqsiZ1rW-6e5tsiIx8RzYVXUaqqQ6b8Hh99XB5w7seC7xWRo54bD0dyGsMRqEUQWiPmcJcB-kNulONZLsIxUCLh4V2Nf2WCaU0NbqgMaDagrnBcBC2gemqdEYrIRyGrMiMc1mVeRFJF0ssc9mDo8lK29cxlYZNKXBl7BgXS7jYhIsVPbiIYEy_jDTY6cGwebbdrrJ55PdDLLysZFZ4LFErd1qSYlJFXsmiB3sTcGy3N1v7hUwPjifwfr3-fUo7f4-2C0syCRZJVb4Hc6PmPezDQv0xemmbgySZn3oI6UY priority: 102 providerName: ProQuest |
| Title | Efficient PINNs via multi-head unimodular regularization of the solutions space |
| URI | https://link.springer.com/article/10.1038/s42005-025-02248-1 https://www.proquest.com/docview/3239936327 https://doaj.org/article/57079ff6d2b246df9f73a09040365b26 |
| Volume | 8 |
| WOSCitedRecordID | wos001550331800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: M7S dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: BENPR dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: PIMPY dateStart: 20250101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2399-3650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140736 issn: 2399-3650 databaseCode: M2P dateStart: 20250101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQYWBBIECUL3lgg4jaTmJ7pKgIhpaIDwkmy4l9EktBTcvv5-ykpUVCLCweYg_Ou7PfnWy_I-SMM6d9ZlniHfNJqrhIMAVzibI5A15KpDQbi03I0Ui9vOhiqdRXuBPWyAM3wGHC3pMaIHe85GnuQIMUtqfR90SelTyKbeOIpWQq7MEc8wYZziUPm3fl6rJOo-hmqN4aaAtTpxUmioL9K1Hmj4PRyDc322SrDRTpVTPBHbLmx7vkfhAVH5AoKKbjo5p-vlka7wQmuKk6Ohsj9C7cLKWTWGR-0j6zpO9AMdSjC0-juJNUfo883wyerm-TtiRCUgnFp0moFO0xyPNKAGeeSQepgEx67hTYngSkGgTd4x9DLm0lkJG95qoC6yV4EPukM34f-wNCZamtkoIxCz7NU2VtWqaOBY1EDTrjXXI-h8d8NMoXJp5YC2UaMA2CaSKYhnVJPyC4GBlUq-MHtKVpbWn-smWXHM_xN-1Sqo0Ir29FLrjskou5Tb67f5_S4X9M6Yhs8ugz6DDZMelMJzN_Qjaqz-lbPTkl6_3BqHg4jc6H7ZAXoZWP2FPcDYvXLxbA3G0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAqIX3qhbCvgAJ4i6fiR2DgjxaNVVS9hDkXozTjyuetktm20Rf4rfyNhJtioS3HrgFCmJnIc_fzPjeQG8FNyXmDueoeeYKSNkRiaYz4wreBC1JpHmUrMJXVXm-LicrsGvIRcmhlUOnJiI2s-buEe-I2MSpiyk0O_Ovmexa1T0rg4tNDpYHODPH2SytW8nn2h-Xwmxt3v0cT_ruwpkjTRimcVmy0h6EhoZBEeufVAy5BqFN8GNdSC2pvfGsTSh0K6hBxsshWmCQx0wSBr3BtxUsbJYDBUU09WejiBrRUdv6FaXzW52WpVKfcaesVFYksF2Rf6lNgFXdNs_3LFJyu3d-9_-z3242-vT7H23AB7AGs4ewu0U19q0j-DLbiqRQZKVTSdV1bKLU8dSEGVGUsiz8xlh1cdQXLbAk3js81LZPDDSjdlqaTKi3gYfw9dr-ZonsD6bz3ATmK5LZ7Tk3AVUhTLOqVp5HotKlqHMxQheDzNrz7pSITa5-KWxHQ4s4cAmHFg-gg9x8ld3xjLf6cR8cWJ71rB5rF8YQuFFLVThQxm0dOOSiFcWeS2KEWwPYLA997T2EgkjeDPA6fLy319p69-jvYA7-0efD-3hpDp4ChsigZoQnW_D-nJxjs_gVnOxPG0Xz9OqYPDtumH2G_H4R2Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+PINNs+via+multi-head+unimodular+regularization+of+the+solutions+space&rft.jtitle=Communications+physics&rft.au=Pedro+Taranc%C3%B3n-%C3%81lvarez&rft.au=Pablo+Tejerina-P%C3%A9rez&rft.au=Raul+Jimenez&rft.au=Pavlos+Protopapas&rft.date=2025-08-15&rft.pub=Nature+Portfolio&rft.eissn=2399-3650&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs42005-025-02248-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57079ff6d2b246df9f73a09040365b26 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon |