Efficient PINNs via multi-head unimodular regularization of the solutions space

Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential eq...

Full description

Saved in:
Bibliographic Details
Published in:Communications physics Vol. 8; no. 1; pp. 335 - 14
Main Authors: Tarancón-Álvarez, Pedro, Tejerina-Pérez, Pablo, Jimenez, Raul, Protopapas, Pavlos
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 15.08.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2399-3650, 2399-3650
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations. Physics-Informed Neural Networks (PINNs) face challenges in generalizing solutions for nonlinear multiscale differential equations and inverse problems. Here, the authors employ a framework of multihead training with unimodular regularization, to enhance PINN efficiency and enable effective transfer learning in case of systems, including the flame equation, van der Pol oscillator, and Einstein Field Equations.
AbstractList Abstract Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.
Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.Physics-Informed Neural Networks (PINNs) face challenges in generalizing solutions for nonlinear multiscale differential equations and inverse problems. Here, the authors employ a framework of multihead training with unimodular regularization, to enhance PINN efficiency and enable effective transfer learning in case of systems, including the flame equation, van der Pol oscillator, and Einstein Field Equations.
Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations. Physics-Informed Neural Networks (PINNs) face challenges in generalizing solutions for nonlinear multiscale differential equations and inverse problems. Here, the authors employ a framework of multihead training with unimodular regularization, to enhance PINN efficiency and enable effective transfer learning in case of systems, including the flame equation, van der Pol oscillator, and Einstein Field Equations.
Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle stiff differential equations. Here we present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multi-head (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multi-head approach, combined with Unimodular Regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.
ArticleNumber 335
Author Protopapas, Pavlos
Jimenez, Raul
Tarancón-Álvarez, Pedro
Tejerina-Pérez, Pablo
Author_xml – sequence: 1
  givenname: Pedro
  orcidid: 0009-0004-5774-231X
  surname: Tarancón-Álvarez
  fullname: Tarancón-Álvarez, Pedro
  email: pedro.tarancon@fqa.ub.edu
  organization: Departament de Física Quántica i Astrofísica, Universitat de Barcelona, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona
– sequence: 2
  givenname: Pablo
  orcidid: 0009-0003-7249-9023
  surname: Tejerina-Pérez
  fullname: Tejerina-Pérez, Pablo
  email: pablo.tejerina@icc.ub.edu
  organization: Departament de Física Quántica i Astrofísica, Universitat de Barcelona, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona
– sequence: 3
  givenname: Raul
  orcidid: 0000-0002-3370-3103
  surname: Jimenez
  fullname: Jimenez, Raul
  organization: Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Institució Catalana de Recerca i Estudis Avançats, ICREA
– sequence: 4
  givenname: Pavlos
  surname: Protopapas
  fullname: Protopapas, Pavlos
  organization: Institute for Applied Computational Science, Harvard University
BookMark eNp9UU1LxTAQDKLg5x_wFPBc3SRtkx5F_Hgg6kHPIba7zzz6mmfSCvrrba2oJw_LbMLMbLKzz7a70CFjxwJOBShzlnIJUGQgp5K5ycQW25OqqjJVFrD9p99lRymtAECKHLQq99j9JZGvPXY9f1jc3SX-5h1fD23vsxd0DR86vw7N0LrIIy4n9B-u96HjgXj_gjyFdpjOiaeNq_GQ7ZBrEx594wF7urp8vLjJbu-vFxfnt1mtjOwzmVcFggE0iqRAoRvKFRUaZWPIgSYtTCMQx-9RqV2tpDJYSVOTQ01I6oAtZt8muJXdRL928d0G5-3XRYhL62Lv6xZtoUFXRGUjn2VeNlSRVg4qyGFcybMsR6-T2WsTw-uAqberMMRufL5V0-pUqaQeWXJm1TGkFJF-pgqwUw52zsGOOdivHKwYRWoWpZHcLTH-Wv-j-gSegIu2
Cites_doi 10.1109/ICDM58522.2023.00065
10.48550/arXiv.1908.02729
10.48550/arXiv.2311.14931
10.1007/JHEP08(2018)034
10.1103/PhysRevD.78.086007
10.1016/j.neunet.2024.106826
10.48550/arXiv.2010.15201
10.1038/s42254-021-00314-5
10.1016/j.jcp.2018.08.029
10.21105/joss.01931
10.48550/arXiv.2211.00214
10.1016/j.jcp.2018.10.045
10.48550/arXiv.2310.17053
10.1016/j.engappai.2023.107324
10.48550/arXiv.2111.08410
10.48550/arXiv.2301.02152
10.1109/TMAG.2023.3247023
10.48550/arXiv.2301.07641
10.1038/s42256-021-00302-5
10.1007/JHEP07(2024)087
10.1109/TNNLS.2019.2919705
10.1137/19M1274067
10.1016/j.jcp.2019.05.024
10.48550/arXiv.1906.01563
10.1002/cnm.1640100303
10.1155/2014/787412
10.48550/arXiv.2010.08895
10.1007/978-3-642-05221-7
10.48550/arXiv.2007.04216
10.48550/arXiv.2110.11286
10.1103/PhysRevE.101.062207
10.48550/arXiv.2407.10836
10.48550/arXiv.2501.17281
10.1103/PhysRevE.105.065305
10.1088/1361-6382/aca386
10.1016/j.cma.2024.117628
10.1090/S0002-9904-1955-09934-8
10.1109/72.870037
10.48550/arXiv.2006.14372
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.1038/s42005-025-02248-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database (via ProQuest SciTech Premium Collection)
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2399-3650
EndPage 14
ExternalDocumentID oai_doaj_org_article_57079ff6d2b246df9f73a09040365b26
10_1038_s42005_025_02248_1
GroupedDBID 0R~
88I
AAFWJ
AAJSJ
AARCD
AASML
ABDBF
ABJCF
ABUWG
ACGFS
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
M2P
M7S
M~E
NAO
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
RNT
SNYQT
AAYXX
AFFHD
CITATION
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c382t-2495e080e83f21e17df43f57e2d8fa07f718d1ee038f67ac3238e928cfae7fef3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001550331800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-3650
IngestDate Mon Nov 10 04:32:34 EST 2025
Sat Aug 23 13:00:29 EDT 2025
Sat Nov 29 07:35:33 EST 2025
Sat Aug 16 01:10:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-2495e080e83f21e17df43f57e2d8fa07f718d1ee038f67ac3238e928cfae7fef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-5774-231X
0000-0002-3370-3103
0009-0003-7249-9023
OpenAccessLink https://doaj.org/article/57079ff6d2b246df9f73a09040365b26
PQID 3239936327
PQPubID 4669724
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_57079ff6d2b246df9f73a09040365b26
proquest_journals_3239936327
crossref_primary_10_1038_s42005_025_02248_1
springer_journals_10_1038_s42005_025_02248_1
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications physics
PublicationTitleAbbrev Commun Phys
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 2248_CR9
M Khalique (2248_CR2) 2014; 2014
J Sirignano (2248_CR31) 2018; 375
2248_CR4
2248_CR3
P Kaul (2248_CR14) 2020; 31
M Mattheakis (2248_CR30) 2022; 105
Y Bea (2248_CR39) 2024; 07
2248_CR26
GE Karniadakis (2248_CR7) 2021; 3
2248_CR25
L Lu (2248_CR8) 2021; 3
2248_CR22
2248_CR23
2248_CR21
I Lagaris (2248_CR29) 2000; 11
F Chen (2248_CR5) 2020; 5
JD Lambert (2248_CR12) 1991
A Choudhary (2248_CR33) 2019; 101
M Berardi (2248_CR24) 2025; 435
E Pinney (2248_CR1) 1955; 61
M Baldan (2248_CR27) 2023; 59
SS Gubser (2248_CR41) 2008; 78
2248_CR15
E Cardoso-Bihlo (2248_CR20) 2025; 181
2248_CR16
2248_CR38
2248_CR35
2248_CR36
2248_CR11
R Carballo-Rubio (2248_CR37) 2022; 39
M Raissi (2248_CR13) 2019; 378
2248_CR34
Y Bea (2248_CR40) 2018; 08
2248_CR10
Y Zhu (2248_CR32) 2019; 394
F Sahli Costabal (2248_CR19) 2024; 127
M Dissanayake (2248_CR28) 1994; 10
2248_CR17
2248_CR18
L Lu (2248_CR6) 2021; 63
References_xml – ident: 2248_CR17
  doi: 10.1109/ICDM58522.2023.00065
– ident: 2248_CR38
  doi: 10.48550/arXiv.1908.02729
– ident: 2248_CR25
  doi: 10.48550/arXiv.2311.14931
– volume: 08
  start-page: 034
  year: 2018
  ident: 2248_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)034
– volume: 78
  start-page: 086007
  year: 2008
  ident: 2248_CR41
  publication-title: Phys. Rev. D.
  doi: 10.1103/PhysRevD.78.086007
– volume: 181
  start-page: 106826
  year: 2025
  ident: 2248_CR20
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2024.106826
– ident: 2248_CR34
  doi: 10.48550/arXiv.2010.15201
– volume: 3
  start-page: 422
  year: 2021
  ident: 2248_CR7
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 375
  start-page: 1339
  year: 2018
  ident: 2248_CR31
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 5
  start-page: 1931
  year: 2020
  ident: 2248_CR5
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01931
– ident: 2248_CR26
  doi: 10.48550/arXiv.2211.00214
– volume-title: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem
  year: 1991
  ident: 2248_CR12
– volume: 378
  start-page: 686
  year: 2019
  ident: 2248_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– ident: 2248_CR18
  doi: 10.48550/arXiv.2310.17053
– volume: 127
  start-page: 107324
  year: 2024
  ident: 2248_CR19
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107324
– ident: 2248_CR15
  doi: 10.48550/arXiv.2111.08410
– ident: 2248_CR21
  doi: 10.48550/arXiv.2301.02152
– volume: 59
  start-page: 1
  year: 2023
  ident: 2248_CR27
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2023.3247023
– ident: 2248_CR36
  doi: 10.48550/arXiv.2301.07641
– volume: 3
  start-page: 218
  year: 2021
  ident: 2248_CR8
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– volume: 07
  start-page: 087
  year: 2024
  ident: 2248_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP07(2024)087
– volume: 31
  start-page: 1410
  year: 2020
  ident: 2248_CR14
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2919705
– volume: 63
  start-page: 208
  year: 2021
  ident: 2248_CR6
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 394
  start-page: 56
  year: 2019
  ident: 2248_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– ident: 2248_CR35
  doi: 10.48550/arXiv.1906.01563
– volume: 10
  start-page: 195
  year: 1994
  ident: 2248_CR28
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1640100303
– volume: 2014
  start-page: 1
  year: 2014
  ident: 2248_CR2
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/787412
– ident: 2248_CR9
  doi: 10.48550/arXiv.2010.08895
– ident: 2248_CR3
– ident: 2248_CR10
  doi: 10.1007/978-3-642-05221-7
– ident: 2248_CR16
  doi: 10.48550/arXiv.2007.04216
– ident: 2248_CR22
  doi: 10.48550/arXiv.2110.11286
– volume: 101
  start-page: 062207
  year: 2019
  ident: 2248_CR33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.062207
– ident: 2248_CR23
  doi: 10.48550/arXiv.2407.10836
– ident: 2248_CR11
  doi: 10.48550/arXiv.2501.17281
– volume: 105
  start-page: 065305
  year: 2022
  ident: 2248_CR30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.105.065305
– volume: 39
  start-page: 243001
  year: 2022
  ident: 2248_CR37
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aca386
– volume: 435
  start-page: 117628
  year: 2025
  ident: 2248_CR24
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117628
– volume: 61
  start-page: 373
  year: 1955
  ident: 2248_CR1
  publication-title: Bull. N. Ser. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1955-09934-8
– volume: 11
  start-page: 1041
  year: 2000
  ident: 2248_CR29
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– ident: 2248_CR4
  doi: 10.48550/arXiv.2006.14372
SSID ssj0002140736
Score 2.307372
Snippet Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method to tackle...
Abstract Non-linear differential equations are a fundamental tool to describe different phenomena in nature. However, we still lack a well-established method...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 335
SubjectTerms 639/705/1042
639/766/259
Accuracy
Algorithms
Boundary conditions
Einstein equations
Geometry
Inverse problems
Linear equations
Machine learning
Neural networks
Nonlinear differential equations
Numerical analysis
Ordinary differential equations
Physics
Physics and Astronomy
Regularization
SummonAdditionalLinks – databaseName: Science Database (via ProQuest SciTech Premium Collection)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaggMTCG1Fe8sAGURPbiZ0JAQIxQGEAic1ybB9iaSEp_f2c3bQVSLCwJpbl5Dvfw3e-j5ATWxYK0qpIKiUqDFBMmhjlIBEWUE-WDgOhyFpyJ_t99fJSPrYHbk1bVjnViVFRu6ENZ-Q9Hi5h8oIzef7-kQTWqJBdbSk0FskSejZZKOm6Z4-zMxaG0YMM2cn9ye1y1WtEbL0ZOFyD8cIA6ps9im37v_maP9Kj0ercrP93vRtkrfU36cVEQDbJgh9skZVY92mbbfJwHVtIoOWhGN_3Gzp-MzQWGSaopR39HCCWLpSq0jqy1tftvU06BIq-I52JLkXVZP0Oeb65frq6TVqOhcRyxUZJoJ726DV6xYFlPpMOBIdceuYUmFQC2i6XeY8_DwppLH6W8iVTFoyX4IHvks5gOPB7hGalgdQ5IQCMwAkrFALPKwxIrPC5zLrkdPqn9fuklYaOKXCu9AQXjbjoiIvG0ZcBjNnI0AY7PhjWr7rdVToP_f0ACscqJgoHJUhu0hIVEy_yihVdcjgFR7d7s9FzZLrkbArv_PXvS9r_e7YDssqiYKFU5YekM6o__RFZtuPRW1MfR8n8Ar9g6g4
  priority: 102
  providerName: ProQuest
Title Efficient PINNs via multi-head unimodular regularization of the solutions space
URI https://link.springer.com/article/10.1038/s42005-025-02248-1
https://www.proquest.com/docview/3239936327
https://doaj.org/article/57079ff6d2b246df9f73a09040365b26
Volume 8
WOSCitedRecordID wos001550331800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: M7S
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: BENPR
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: PIMPY
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: M2P
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQMLAgECAKBXlgg4jEdmJnpKgIJCgRH1KZLCf2SV1a1LT9_ZydFCgSYmHxEFuR8-5yd08-3xFyVuWZgrjMolKJEgmKiSOjLESiArSTuUUiFLqW3MvBQA2HefGt1ZfPCWvKAzfAIWGPZQ6QWVYykVnIQXIT56h7PEtLFopt44pvZMrbYIa8QfpzyaPmXrm6rEUouum7t3q3hdRpxROFgv0rUeaPg9Hgb252yHYbKNKrZoO7ZM2N98hjP1R8QEdBkY4ParoYGRpyAiM0qpbOxwi99ZmldBqazE_ba5Z0AhRDPfqpaRQtSeX2yetN_-X6NmpbIkQVV2wW-U7RDoM8pziwxCXSguCQSsesAhNLQFdjE-fwiyGTpuLokV3OVAXGSXDAD8j6eDJ2h4QmuYHYWiEAjMAXligzx0vkD5VwqUw65HwJj35vKl_ocGLNlW7A1AimDmBqXN3zCH6u9FWrwwOUpW5lqf-SZYd0l_jr9leqNfe3b3nGmeyQi6VMvqZ_39LRf2zpmGyxoDOoMGmXrM-mc3dCNqvFbFRPT8lGrz8onk6D8uH4wAo_ymecKe4eircPfpLdNQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb8S2BXyAE0RNbCd2DhVqoVVXXcIeitSbSWxP1ctu2WyL-FP8RsZOslWR4NYDp0hJ5Dz8-ZsZzwvgjS0LjWlTJI2WDRkodZrU2mEiLRJPlo4Modi1ZKKqSp-clNM1-DXkwoSwyoETI1G7uQ175NsiJGGKQnD14fx7ErpGBe_q0EKjg8WR__mDTLZ2Z_yJ5vct5wf7xx8Pk76rQGKF5sskNFv2pCd5LZBnPlMOpcBcee401qlCYmuXeZ8KjYWqLT1Y-5Jri7VX6FHQuLfgtgyVxUKoIJ-u9nQ4WSsqeEM3umx2vd3KWOoz9IwNwpIMtmvyL7YJuKbb_uGOjVLu4OH_9n8ewYNen2a73QJ4DGt-9gTuxrhW2z6FL_uxRAZJVjYdV1XLLs9qFoMoE5JCjl3MCKsuhOKyhT8Nxz4vlc2RkW7MVkuTEfVa_wy-3sjXPIf12XzmXwDLyhpT56RErCUN2BDIvWjI4LLS5yobwbthZs15VyrERBe_0KbDgSEcmIgDQ3fvhclf3RnKfMcT88Wp6VnD5KF-IWLheMNl4bBEJeq0JOIVRd7wYgRbAxhMzz2tuULCCN4PcLq6_PdX2vj3aK_h3uHx54mZjKujTbjPI6gJ0fkWrC8XF_4l3LGXy7N28SquCgbfbhpmvwG9V0gu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+PINNs+via+multi-head+unimodular+regularization+of+the+solutions+space&rft.jtitle=Communications+physics&rft.au=Pedro+Taranc%C3%B3n-%C3%81lvarez&rft.au=Pablo+Tejerina-P%C3%A9rez&rft.au=Raul+Jimenez&rft.au=Pavlos+Protopapas&rft.date=2025-08-15&rft.pub=Nature+Portfolio&rft.eissn=2399-3650&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs42005-025-02248-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57079ff6d2b246df9f73a09040365b26
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon