A generalized framework for modelling ordinal data

In several applied disciplines, as Economics, Marketing, Business, Sociology, Psychology, Political science, Environmental research and Medicine, it is common to collect data in the form of ordered categorical observations. In this paper, we introduce a class of models based on mixtures of discrete...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistical methods & applications Ročník 25; číslo 2; s. 163 - 189
Hlavní autori: Iannario, Maria, Piccolo, Domenico
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Springer Nature B.V
Predmet:
ISSN:1618-2510, 1613-981X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In several applied disciplines, as Economics, Marketing, Business, Sociology, Psychology, Political science, Environmental research and Medicine, it is common to collect data in the form of ordered categorical observations. In this paper, we introduce a class of models based on mixtures of discrete random variables in order to specify a general framework for the statistical analysis of this kind of data. The structure of these models allows the interpretation of the final response as related to feeling, uncertainty and a possible shelter option and the expression of the relationship among these components and subjects’ covariates. Such a model may be effectively estimated by maximum likelihood methods leading to asymptotically efficient inference. We present a simulation experiment and discuss a real case study to check the consistency and the usefulness of the approach. Some final considerations conclude the paper.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1618-2510
1613-981X
DOI:10.1007/s10260-015-0316-9