A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update

Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 72; H. 2; S. 700 - 734
Hauptverfasser: Xu, Yangyang, Yin, Wotao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2017
Springer Nature B.V
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its global convergence (of the whole sequence) to a critical point. In addition, we give its asymptotic convergence rate and numerically demonstrate its efficiency. In our algorithm, the variables of the underlying problem are either treated as one block or multiple disjoint blocks. It is assumed that each non-differentiable component of the objective function, or each constraint, applies only to one block of variables. The differentiable components of the objective function, however, can involve multiple blocks of variables together. Our algorithm updates one block of variables at a time by minimizing a certain prox-linear surrogate, along with an extrapolation to accelerate its convergence. The order of update can be either deterministically cyclic or randomly shuffled for each cycle. In fact, our convergence analysis only needs that each block be updated at least once in every fixed number of iterations. We show its global convergence (of the whole sequence) to a critical point under fairly loose conditions including, in particular, the Kurdyka–Łojasiewicz condition, which is satisfied by a broad class of nonconvex/nonsmooth applications. These results, of course, remain valid when the underlying problem is convex. We apply our convergence results to the coordinate descent iteration for non-convex regularized linear regression, as well as a modified rank-one residue iteration for nonnegative matrix factorization. We show that both applications have global convergence. Numerically, we tested our algorithm on nonnegative matrix and tensor factorization problems, where random shuffling clearly improves the chance to avoid low-quality local solutions.
AbstractList Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have local convergence or subsequence convergence properties. In this paper, we propose an algorithm for nonconvex optimization and establish its global convergence (of the whole sequence) to a critical point. In addition, we give its asymptotic convergence rate and numerically demonstrate its efficiency. In our algorithm, the variables of the underlying problem are either treated as one block or multiple disjoint blocks. It is assumed that each non-differentiable component of the objective function, or each constraint, applies only to one block of variables. The differentiable components of the objective function, however, can involve multiple blocks of variables together. Our algorithm updates one block of variables at a time by minimizing a certain prox-linear surrogate, along with an extrapolation to accelerate its convergence. The order of update can be either deterministically cyclic or randomly shuffled for each cycle. In fact, our convergence analysis only needs that each block be updated at least once in every fixed number of iterations. We show its global convergence (of the whole sequence) to a critical point under fairly loose conditions including, in particular, the Kurdyka–Łojasiewicz condition, which is satisfied by a broad class of nonconvex/nonsmooth applications. These results, of course, remain valid when the underlying problem is convex. We apply our convergence results to the coordinate descent iteration for non-convex regularized linear regression, as well as a modified rank-one residue iteration for nonnegative matrix factorization. We show that both applications have global convergence. Numerically, we tested our algorithm on nonnegative matrix and tensor factorization problems, where random shuffling clearly improves the chance to avoid low-quality local solutions.
Author Xu, Yangyang
Yin, Wotao
Author_xml – sequence: 1
  givenname: Yangyang
  orcidid: 0000-0002-4163-3723
  surname: Xu
  fullname: Xu, Yangyang
  email: yangyang.xu@ua.edu
  organization: Department of Mathematics, University of Alabama
– sequence: 2
  givenname: Wotao
  orcidid: 0000-0001-6697-9731
  surname: Yin
  fullname: Yin, Wotao
  organization: Department of Mathematics, UCLA
BookMark eNp9kEtLAzEUhYMoWKs_wF3A9Whu5pFkWYtWoejGrlyETCapU6dJTaJYf70zVhAEXZ0L93z3cY7QvvPOIHQK5BwIYRcRiIAyI8AykrMqI3toBCXLM1YJ2EcjwnmZsYIVh-goxhUhRHBBR-hxgmedr1XXbfHUuzcTlsYlPOmWPrTpaY2tD_jOOz303vH9JrXr9kOl1jt8qaJp8FB0Xj_3uA9N61QyeLFpejlGB1Z10Zx86xgtrq8epjfZ_H52O53MM51zmjJQ3NSWNwpqWpOmLq0uOIfKkrwEZllVU9NQoa0SWpWNKCwrgda0qWwhNKnyMTrbzd0E__JqYpIr_xpcv1JSATyHHArSu9jOpYOPMRgrdZu-HklBtZ0EIock5S5J2ScphyTlQMIvchPatQrbfxm6Y2LvdUsTfm76G_oEIBiIWA
CitedBy_id crossref_primary_10_1007_s11045_021_00818_4
crossref_primary_10_1016_j_coche_2018_12_007
crossref_primary_10_1109_TSP_2017_2778695
crossref_primary_10_1007_s10898_022_01168_6
crossref_primary_10_1007_s40305_017_0183_1
crossref_primary_10_1287_moor_2022_1256
crossref_primary_10_1016_j_sigpro_2020_107537
crossref_primary_10_1109_TCYB_2019_2950337
crossref_primary_10_1109_TII_2017_2777144
crossref_primary_10_1007_s11401_021_0253_x
crossref_primary_10_1137_21M1430613
crossref_primary_10_1007_s10915_025_02976_0
crossref_primary_10_1080_00207160_2020_1723562
crossref_primary_10_1007_s10589_022_00394_8
crossref_primary_10_1007_s11263_022_01709_2
crossref_primary_10_1007_s10107_022_01836_1
crossref_primary_10_1016_j_apm_2024_115784
crossref_primary_10_1016_j_jfranklin_2023_04_021
crossref_primary_10_1007_s11424_024_3568_3
crossref_primary_10_1016_j_nima_2023_169028
crossref_primary_10_1109_TNNLS_2019_2947156
crossref_primary_10_1109_TNNLS_2022_3166931
crossref_primary_10_1109_TSP_2021_3118493
crossref_primary_10_1016_j_eswa_2021_116491
crossref_primary_10_1109_TNNLS_2021_3051650
crossref_primary_10_1109_ACCESS_2025_3596642
crossref_primary_10_1109_JBHI_2022_3140455
crossref_primary_10_1137_21M1449099
crossref_primary_10_1109_TIM_2020_2998564
crossref_primary_10_1007_s10898_022_01180_w
crossref_primary_10_1080_10556788_2020_1746963
crossref_primary_10_1109_TAC_2024_3386061
crossref_primary_10_1109_TIP_2019_2937734
crossref_primary_10_1016_j_sigpro_2022_108694
crossref_primary_10_1016_j_radphyschem_2025_112654
crossref_primary_10_1109_TCNS_2022_3213706
crossref_primary_10_1007_s10589_018_0037_8
crossref_primary_10_1109_TSP_2020_2996374
crossref_primary_10_1109_TIM_2023_3328069
crossref_primary_10_1007_s10589_024_00574_8
crossref_primary_10_1016_j_dsp_2022_103734
crossref_primary_10_1109_ACCESS_2019_2933845
crossref_primary_10_1007_s40324_023_00340_6
crossref_primary_10_1287_ijoo_2019_0022
crossref_primary_10_1007_s13278_022_00898_5
crossref_primary_10_1109_TWC_2022_3177840
crossref_primary_10_3390_jmse11091713
crossref_primary_10_1007_s10957_023_02348_4
crossref_primary_10_1109_TKDE_2022_3206881
crossref_primary_10_1137_21M140376X
crossref_primary_10_1109_TWC_2022_3204786
crossref_primary_10_1109_TCSVT_2020_2989659
crossref_primary_10_1016_j_inffus_2024_102501
crossref_primary_10_1109_TSP_2019_2959240
crossref_primary_10_1016_j_cam_2025_116973
crossref_primary_10_1016_j_insmatheco_2022_01_005
crossref_primary_10_1109_TSP_2020_3026177
crossref_primary_10_1109_TWC_2020_3021036
crossref_primary_10_1109_LCOMM_2023_3264935
crossref_primary_10_1631_FITEE_1900341
crossref_primary_10_1109_TAES_2021_3098160
crossref_primary_10_1016_j_ins_2021_12_055
crossref_primary_10_1109_LCOMM_2020_3027904
crossref_primary_10_1016_j_jmaa_2024_128925
crossref_primary_10_1371_journal_pcbi_1009044
crossref_primary_10_1038_s41524_024_01377_5
crossref_primary_10_1007_s11075_019_00705_x
crossref_primary_10_1109_JSEN_2022_3153629
crossref_primary_10_1137_16M1084705
crossref_primary_10_1016_j_cjche_2018_08_027
crossref_primary_10_1016_j_cam_2020_112785
crossref_primary_10_1109_TGCN_2023_3288519
crossref_primary_10_1016_j_patcog_2022_109102
crossref_primary_10_1109_TPWRS_2020_3049135
crossref_primary_10_1080_02331934_2024_2439559
crossref_primary_10_6339_22_JDS1048
crossref_primary_10_1007_s10898_024_01382_4
crossref_primary_10_1137_20M136205X
crossref_primary_10_1007_s10898_025_01495_4
crossref_primary_10_1109_TWC_2022_3189396
crossref_primary_10_1007_s10107_019_01364_5
crossref_primary_10_1007_s11590_023_01976_z
crossref_primary_10_1017_S0962492918000016
crossref_primary_10_1080_10556788_2019_1658758
crossref_primary_10_1109_LSP_2018_2875251
crossref_primary_10_1109_TPAMI_2020_3012955
crossref_primary_10_1007_s10915_024_02715_x
crossref_primary_10_1002_nav_70007
crossref_primary_10_3233_ICA_230718
crossref_primary_10_1007_s10107_020_01599_7
crossref_primary_10_3390_sym16020154
crossref_primary_10_1109_TIP_2021_3061908
crossref_primary_10_1137_21M145313X
crossref_primary_10_3390_s19122708
crossref_primary_10_1007_s10994_019_05819_w
crossref_primary_10_1109_ACCESS_2024_3356173
crossref_primary_10_1109_TSP_2022_3154969
crossref_primary_10_1137_20M1363388
crossref_primary_10_1016_j_eswa_2025_126652
crossref_primary_10_1109_TSP_2022_3150402
crossref_primary_10_1016_j_jksuci_2022_11_017
crossref_primary_10_1109_TKDE_2019_2932063
crossref_primary_10_1088_1361_6560_ac3842
crossref_primary_10_1137_23M1603959
crossref_primary_10_1109_TMI_2018_2807590
crossref_primary_10_1109_TKDE_2023_3279369
crossref_primary_10_1016_j_jappgeo_2018_06_005
crossref_primary_10_1016_j_sigpro_2023_109219
crossref_primary_10_1007_s10957_025_02799_x
crossref_primary_10_1007_s40314_020_01395_1
crossref_primary_10_1007_s10915_024_02548_8
crossref_primary_10_1007_s11075_024_01965_y
crossref_primary_10_1007_s11704_019_8374_z
crossref_primary_10_1007_s10589_025_00708_6
crossref_primary_10_1109_LRA_2024_3387138
crossref_primary_10_1007_s10898_024_01451_8
crossref_primary_10_1016_j_sigpro_2018_04_006
crossref_primary_10_1109_JSTARS_2023_3238653
crossref_primary_10_1109_TSP_2017_2698365
crossref_primary_10_3390_jmse12071220
crossref_primary_10_1007_s00607_023_01210_9
crossref_primary_10_1007_s11431_020_1840_4
crossref_primary_10_1137_17M1142624
crossref_primary_10_3390_s23239379
crossref_primary_10_1137_22M1487321
crossref_primary_10_1080_10618600_2023_2213279
crossref_primary_10_1007_s10589_022_00433_4
crossref_primary_10_1109_TSP_2019_2899294
crossref_primary_10_1109_TSP_2020_2975910
crossref_primary_10_1007_s10957_018_1272_y
crossref_primary_10_1007_s10107_024_02103_1
crossref_primary_10_1109_TGRS_2018_2832721
crossref_primary_10_1109_TAC_2020_3027647
crossref_primary_10_1109_TNNLS_2020_2985850
Cites_doi 10.1137/S1052623402411459
10.1137/110840364
10.1007/s12532-014-0074-y
10.1007/BF00939948
10.1137/110840054
10.1007/s12532-012-0044-1
10.5802/aif.1384
10.3934/ipi.2016012
10.1038/44565
10.1287/moor.1100.0449
10.1023/A:1023673105317
10.1007/s10044-015-0485-z
10.1007/s10107-007-0133-5
10.1137/080716542
10.1007/s10107-014-0800-2
10.1080/10556789908805730
10.1137/070697835
10.1214/10-AOAS388
10.1214/09-AOS729
10.1137/030601296
10.1109/TSP.2006.881199
10.1007/s10107-012-0569-0
10.1137/120891009
10.1007/s10107-011-0484-9
10.1198/016214501753382273
10.1007/s10107-012-0614-z
10.1137/S0097539792240406
10.1002/nav.3800040113
10.1090/S0002-9947-09-05048-X
10.1137/050644641
10.1007/s10898-013-0035-4
10.1137/100802001
10.1137/120887795
10.1002/env.3170050203
10.1016/S0167-8655(01)00070-8
10.1137/120887679
10.1007/s10107-015-0871-8
10.1016/j.acha.2009.04.002
10.1023/A:1017501703105
10.1137/07070111X
10.1007/s10107-007-0170-0
10.1007/s10957-012-0167-6
10.1007/978-94-007-0602-6_13
10.5802/aif.1638
10.1145/1553374.1553463
10.4310/AMSA.2016.v1.n1.a2
10.1007/s10208-017-9366-8
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Springer Science+Business Media New York 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Springer Science+Business Media New York 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10915-017-0376-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 734
ExternalDocumentID 10_1007_s10915_017_0376_0
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-1317602
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Army Research Office
  grantid: MURI W911NF-09-1-0383
  funderid: http://dx.doi.org/10.13039/100000183
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-1a8ebf8da1b2b0db5fc48816f03517f76b2ed29cfa9ca5d94f7512b2d6f49c063
IEDL.DBID RSV
ISICitedReferencesCount 166
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406014800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 02:29:18 EST 2025
Sat Nov 29 01:56:17 EST 2025
Tue Nov 18 22:38:16 EST 2025
Fri Feb 21 02:36:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonsmooth optimization
Nonconvex optimization
Prox-linear
Block coordinate descent
Whole sequence convergence
Kurdyka–Łojasiewicz inequality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-1a8ebf8da1b2b0db5fc48816f03517f76b2ed29cfa9ca5d94f7512b2d6f49c063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4163-3723
0000-0001-6697-9731
PQID 2918313140
PQPubID 2043771
PageCount 35
ParticipantIDs proquest_journals_2918313140
crossref_citationtrail_10_1007_s10915_017_0376_0
crossref_primary_10_1007_s10915_017_0376_0
springer_journals_10_1007_s10915_017_0376_0
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Attouch, Bolte, Redont, Soubeyran (CR4) 2010; 35
Bagirov, Jin, Karmitsa, Al Nuaimat, Sultanova (CR6) 2013; 157
CR37
Xu, Yin (CR62) 2016; 10
CR35
Xu (CR59) 2015; 7
CR34
Wen, Yin, Zhang (CR58) 2012; 4
Burke, Lewis, Overton (CR15) 2005; 15
CR31
Kim, He, Park (CR28) 2014; 58
Luo, Tseng (CR39) 1992; 72
Łojasiewicz (CR36) 1993; 43
Zhang (CR63) 2010; 38
Hoyer (CR27) 2004; 5
CR2
Attouch, Bolte, Svaiter (CR5) 2013; 137
Bolte, Daniilidis, Lewis (CR11) 2007; 17
Breheny, Huang (CR14) 2011; 5
Kruger (CR30) 2003; 116
Fuduli, Gaudioso, Giallombardo (CR21) 2004; 14
Rockafellar, Wets (CR52) 2009
Paatero, Tapper (CR47) 1994; 5
Razaviyayn, Hong, Luo (CR49) 2013; 23
Chang, Hsieh, Lin (CR16) 2008; 9
CR46
Lai, Xu, Yin (CR32) 2013; 51
Peng, Wu, Xu, Yan, Yin (CR48) 2016; 1
Saha, Tewari (CR53) 2013; 23
CR40
Beck, Teboulle (CR7) 2009; 2
Mohan, Fazel (CR41) 2012; 13
Lee, Seung (CR33) 1999; 401
Bolte, Sabach, Teboulle (CR13) 2014; 146
Blumensath, Davies (CR10) 2009; 27
CR19
Beck, Tetruashvili (CR8) 2013; 23
CR17
Bolte, Daniilidis, Ley, Mazet (CR12) 2010; 362
Ghadimi, Lan (CR22) 2016; 156
CR54
Richtárik, Takáč (CR51) 2014; 144
Tseng, Yun (CR56) 2009; 117
Welling, Weber (CR57) 2001; 22
Kolda, Bader (CR29) 2009; 51
Nocedal, Wright (CR45) 2006
Chen (CR18) 2012; 134
Lu, Xiao (CR38) 2015; 152
Fan, Li (CR20) 2001; 96
Natarajan (CR42) 1995; 24
CR26
Nesterov (CR43) 2012; 22
CR25
Recht, Fazel, Parrilo (CR50) 2010; 52
Hildreth (CR24) 1957; 4
Tseng (CR55) 2001; 109
Attouch, Bolte (CR3) 2009; 116
Bertsekas (CR9) 1999
Xu, Akrotirianakis, Chakraborty (CR60) 2016; 19
Aharon, Elad, Bruckstein (CR1) 2006; 54
Grippo, Sciandrone (CR23) 1999; 10
Nesterov (CR44) 2013
Xu, Yin (CR61) 2013; 6
B Recht (376_CR50) 2010; 52
A Saha (376_CR53) 2013; 23
Y Xu (376_CR59) 2015; 7
376_CR31
Z Wen (376_CR58) 2012; 4
M Aharon (376_CR1) 2006; 54
376_CR35
376_CR34
A Fuduli (376_CR21) 2004; 14
376_CR26
H Attouch (376_CR5) 2013; 137
Z Peng (376_CR48) 2016; 1
Y Xu (376_CR60) 2016; 19
P Tseng (376_CR55) 2001; 109
H Attouch (376_CR3) 2009; 116
H Attouch (376_CR4) 2010; 35
C Hildreth (376_CR24) 1957; 4
S Ghadimi (376_CR22) 2016; 156
BK Natarajan (376_CR42) 1995; 24
Y Nesterov (376_CR43) 2012; 22
R Rockafellar (376_CR52) 2009
J Bolte (376_CR12) 2010; 362
376_CR40
M Razaviyayn (376_CR49) 2013; 23
Y Xu (376_CR62) 2016; 10
J Fan (376_CR20) 2001; 96
M Welling (376_CR57) 2001; 22
KW Chang (376_CR16) 2008; 9
T Kolda (376_CR29) 2009; 51
376_CR46
P Tseng (376_CR56) 2009; 117
DP Bertsekas (376_CR9) 1999
AM Bagirov (376_CR6) 2013; 157
376_CR37
Z Lu (376_CR38) 2015; 152
Y Xu (376_CR61) 2013; 6
P Richtárik (376_CR51) 2014; 144
J Nocedal (376_CR45) 2006
P Paatero (376_CR47) 1994; 5
CH Zhang (376_CR63) 2010; 38
S Łojasiewicz (376_CR36) 1993; 43
P Hoyer (376_CR27) 2004; 5
376_CR54
X Chen (376_CR18) 2012; 134
T Blumensath (376_CR10) 2009; 27
J Kim (376_CR28) 2014; 58
K Mohan (376_CR41) 2012; 13
D Lee (376_CR33) 1999; 401
P Breheny (376_CR14) 2011; 5
ZQ Luo (376_CR39) 1992; 72
J Bolte (376_CR11) 2007; 17
Y Nesterov (376_CR44) 2013
376_CR2
AY Kruger (376_CR30) 2003; 116
376_CR25
376_CR17
J Bolte (376_CR13) 2014; 146
376_CR19
A Beck (376_CR8) 2013; 23
A Beck (376_CR7) 2009; 2
JV Burke (376_CR15) 2005; 15
L Grippo (376_CR23) 1999; 10
MJ Lai (376_CR32) 2013; 51
References_xml – volume: 14
  start-page: 743
  issue: 3
  year: 2004
  end-page: 756
  ident: CR21
  article-title: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402411459
– volume: 51
  start-page: 927
  issue: 2
  year: 2013
  end-page: 957
  ident: CR32
  article-title: Improved iteratively reweighted least squares for unconstrained smoothed minimization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110840364
– volume: 5
  start-page: 1457
  year: 2004
  end-page: 1469
  ident: CR27
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 39
  issue: 1
  year: 2015
  end-page: 70
  ident: CR59
  article-title: Alternating proximal gradient method for sparse nonnegative tucker decomposition
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-014-0074-y
– volume: 72
  start-page: 7
  issue: 1
  year: 1992
  end-page: 35
  ident: CR39
  article-title: On the convergence of the coordinate descent method for convex differentiable minimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939948
– volume: 23
  start-page: 576
  issue: 1
  year: 2013
  end-page: 601
  ident: CR53
  article-title: On the nonasymptotic convergence of cyclic coordinate descent methods
  publication-title: SIAM J. Optim.
  doi: 10.1137/110840054
– volume: 4
  start-page: 333
  issue: 4
  year: 2012
  end-page: 361
  ident: CR58
  article-title: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-012-0044-1
– volume: 43
  start-page: 1575
  issue: 5
  year: 1993
  end-page: 1595
  ident: CR36
  article-title: Sur la géométrie semi-et sous-analytique
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.1384
– ident: CR35
– year: 1999
  ident: CR9
  publication-title: Nonlinear Programming
– ident: CR54
– volume: 10
  start-page: 563
  issue: 2
  year: 2016
  end-page: 583
  ident: CR62
  article-title: A fast patch-dictionary method for whole image recovery
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2016012
– ident: CR25
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  ident: CR33
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  end-page: 457
  ident: CR4
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Lojasiewicz inequality
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 116
  start-page: 3325
  issue: 3
  year: 2003
  end-page: 3358
  ident: CR30
  article-title: On fréchet subdifferentials
  publication-title: J. Math. Sci.
  doi: 10.1023/A:1023673105317
– volume: 19
  start-page: 989
  issue: 4
  year: 2016
  end-page: 1005
  ident: CR60
  article-title: Proximal gradient method for huberized support vector machine
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-015-0485-z
– volume: 116
  start-page: 5
  issue: 1
  year: 2009
  end-page: 16
  ident: CR3
  article-title: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0133-5
– ident: CR46
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR7
  article-title: A fast iterative shrinkage–thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– ident: CR19
– volume: 152
  start-page: 615
  issue: 1–2
  year: 2015
  end-page: 642
  ident: CR38
  article-title: On the complexity analysis of randomized block-coordinate descent methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0800-2
– volume: 10
  start-page: 587
  issue: 4
  year: 1999
  end-page: 637
  ident: CR23
  article-title: Globally convergent block-coordinate techniques for unconstrained optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805730
– year: 2009
  ident: CR52
  publication-title: Variational Analysis
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  end-page: 501
  ident: CR50
  article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
  publication-title: SIAM Rev.
  doi: 10.1137/070697835
– volume: 1
  start-page: 57
  issue: 1
  year: 2016
  end-page: 119
  ident: CR48
  article-title: Coordinate friendly structures, algorithms and applications
  publication-title: Ann. Math. Sci. Appl.
– volume: 5
  start-page: 232
  issue: 1
  year: 2011
  end-page: 253
  ident: CR14
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS388
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  end-page: 494
  ident: CR13
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math.
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  end-page: 942
  ident: CR63
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– ident: CR26
– year: 2006
  ident: CR45
  publication-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering.
– volume: 15
  start-page: 751
  issue: 3
  year: 2005
  end-page: 779
  ident: CR15
  article-title: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/030601296
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  ident: CR1
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– ident: CR2
– ident: CR37
– volume: 134
  start-page: 71
  issue: 1
  year: 2012
  end-page: 99
  ident: CR18
  article-title: Smoothing methods for nonsmooth, nonconvex minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0569-0
– volume: 23
  start-page: 1126
  issue: 2
  year: 2013
  end-page: 1153
  ident: CR49
  article-title: A unified convergence analysis of block successive minimization methods for nonsmooth optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891009
– year: 2013
  ident: CR44
  publication-title: Introductory lectures on convex optimization: a basic course
– volume: 137
  start-page: 91
  issue: 1–2
  year: 2013
  end-page: 129
  ident: CR5
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– ident: CR40
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  end-page: 1360
  ident: CR20
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 144
  start-page: 1
  issue: 1
  year: 2014
  end-page: 38
  ident: CR51
  article-title: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0614-z
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  end-page: 234
  ident: CR42
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792240406
– volume: 4
  start-page: 79
  issue: 1
  year: 1957
  end-page: 85
  ident: CR24
  article-title: A quadratic programming procedure
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800040113
– volume: 362
  start-page: 3319
  issue: 6
  year: 2010
  end-page: 3363
  ident: CR12
  article-title: Characterizations of łojasiewicz inequalities: subgradient flows, talweg, convexity
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-05048-X
– volume: 17
  start-page: 1205
  issue: 4
  year: 2007
  end-page: 1223
  ident: CR11
  article-title: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume: 58
  start-page: 285
  issue: 2
  year: 2014
  end-page: 319
  ident: CR28
  article-title: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-013-0035-4
– volume: 22
  start-page: 341
  issue: 2
  year: 2012
  end-page: 362
  ident: CR43
  article-title: Efficiency of coordinate descent methods on huge-scale optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/100802001
– ident: CR17
– ident: CR31
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  end-page: 1789
  ident: CR61
  article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  end-page: 126
  ident: CR47
  article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– ident: CR34
– volume: 22
  start-page: 1255
  issue: 12
  year: 2001
  end-page: 1261
  ident: CR57
  article-title: Positive tensor factorization
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(01)00070-8
– volume: 23
  start-page: 2037
  issue: 4
  year: 2013
  end-page: 2060
  ident: CR8
  article-title: On the convergence of block coordinate descent type methods
  publication-title: SIAM J. Optim.
  doi: 10.1137/120887679
– volume: 156
  start-page: 59
  issue: 1
  year: 2016
  end-page: 99
  ident: CR22
  article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0871-8
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  end-page: 274
  ident: CR10
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 109
  start-page: 475
  issue: 3
  year: 2001
  end-page: 494
  ident: CR55
  article-title: Convergence of a block coordinate descent method for nondifferentiable minimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017501703105
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: CR29
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 9
  start-page: 1369
  year: 2008
  end-page: 1398
  ident: CR16
  article-title: Coordinate descent method for large-scale l2-loss linear support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 117
  start-page: 387
  issue: 1
  year: 2009
  end-page: 423
  ident: CR56
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– volume: 157
  start-page: 416
  issue: 2
  year: 2013
  end-page: 435
  ident: CR6
  article-title: Subgradient method for nonconvex nonsmooth optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0167-6
– volume: 13
  start-page: 3441
  issue: 1
  year: 2012
  end-page: 3473
  ident: CR41
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: J. Mach. Learn. Res.
– volume: 362
  start-page: 3319
  issue: 6
  year: 2010
  ident: 376_CR12
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-05048-X
– volume: 109
  start-page: 475
  issue: 3
  year: 2001
  ident: 376_CR55
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017501703105
– volume: 13
  start-page: 3441
  issue: 1
  year: 2012
  ident: 376_CR41
  publication-title: J. Mach. Learn. Res.
– volume-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering.
  year: 2006
  ident: 376_CR45
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 376_CR7
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 15
  start-page: 751
  issue: 3
  year: 2005
  ident: 376_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/030601296
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 376_CR29
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 23
  start-page: 2037
  issue: 4
  year: 2013
  ident: 376_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/120887679
– volume-title: Variational Analysis
  year: 2009
  ident: 376_CR52
– volume: 137
  start-page: 91
  issue: 1–2
  year: 2013
  ident: 376_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– ident: 376_CR19
– volume: 156
  start-page: 59
  issue: 1
  year: 2016
  ident: 376_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0871-8
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  ident: 376_CR10
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 22
  start-page: 1255
  issue: 12
  year: 2001
  ident: 376_CR57
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(01)00070-8
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 376_CR4
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 51
  start-page: 927
  issue: 2
  year: 2013
  ident: 376_CR32
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110840364
– volume: 23
  start-page: 576
  issue: 1
  year: 2013
  ident: 376_CR53
  publication-title: SIAM J. Optim.
  doi: 10.1137/110840054
– volume: 7
  start-page: 39
  issue: 1
  year: 2015
  ident: 376_CR59
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-014-0074-y
– volume: 19
  start-page: 989
  issue: 4
  year: 2016
  ident: 376_CR60
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-015-0485-z
– volume: 4
  start-page: 333
  issue: 4
  year: 2012
  ident: 376_CR58
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-012-0044-1
– ident: 376_CR46
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 376_CR1
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume-title: Nonlinear Programming
  year: 1999
  ident: 376_CR9
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 376_CR63
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 72
  start-page: 7
  issue: 1
  year: 1992
  ident: 376_CR39
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939948
– ident: 376_CR35
– volume: 22
  start-page: 341
  issue: 2
  year: 2012
  ident: 376_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/100802001
– ident: 376_CR25
  doi: 10.1007/978-94-007-0602-6_13
– volume: 14
  start-page: 743
  issue: 3
  year: 2004
  ident: 376_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402411459
– ident: 376_CR31
  doi: 10.5802/aif.1638
– ident: 376_CR26
– volume: 23
  start-page: 1126
  issue: 2
  year: 2013
  ident: 376_CR49
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891009
– volume: 4
  start-page: 79
  issue: 1
  year: 1957
  ident: 376_CR24
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800040113
– volume: 116
  start-page: 3325
  issue: 3
  year: 2003
  ident: 376_CR30
  publication-title: J. Math. Sci.
  doi: 10.1023/A:1023673105317
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  ident: 376_CR13
  publication-title: Math.
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 376_CR33
  publication-title: Nature
  doi: 10.1038/44565
– volume: 157
  start-page: 416
  issue: 2
  year: 2013
  ident: 376_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0167-6
– ident: 376_CR17
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  ident: 376_CR42
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792240406
– ident: 376_CR40
  doi: 10.1145/1553374.1553463
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 376_CR20
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 134
  start-page: 71
  issue: 1
  year: 2012
  ident: 376_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0569-0
– volume: 116
  start-page: 5
  issue: 1
  year: 2009
  ident: 376_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0133-5
– volume: 5
  start-page: 1457
  year: 2004
  ident: 376_CR27
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 587
  issue: 4
  year: 1999
  ident: 376_CR23
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805730
– volume: 1
  start-page: 57
  issue: 1
  year: 2016
  ident: 376_CR48
  publication-title: Ann. Math. Sci. Appl.
  doi: 10.4310/AMSA.2016.v1.n1.a2
– ident: 376_CR54
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  ident: 376_CR50
  publication-title: SIAM Rev.
  doi: 10.1137/070697835
– volume: 144
  start-page: 1
  issue: 1
  year: 2014
  ident: 376_CR51
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0614-z
– volume-title: Introductory lectures on convex optimization: a basic course
  year: 2013
  ident: 376_CR44
– ident: 376_CR2
– volume: 10
  start-page: 563
  issue: 2
  year: 2016
  ident: 376_CR62
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2016012
– volume: 9
  start-page: 1369
  year: 2008
  ident: 376_CR16
  publication-title: J. Mach. Learn. Res.
– ident: 376_CR34
  doi: 10.1007/s10208-017-9366-8
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 376_CR47
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 58
  start-page: 285
  issue: 2
  year: 2014
  ident: 376_CR28
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-013-0035-4
– volume: 152
  start-page: 615
  issue: 1–2
  year: 2015
  ident: 376_CR38
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0800-2
– volume: 117
  start-page: 387
  issue: 1
  year: 2009
  ident: 376_CR56
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– volume: 17
  start-page: 1205
  issue: 4
  year: 2007
  ident: 376_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume: 5
  start-page: 232
  issue: 1
  year: 2011
  ident: 376_CR14
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS388
– ident: 376_CR37
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 376_CR61
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume: 43
  start-page: 1575
  issue: 5
  year: 1993
  ident: 376_CR36
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.1384
SSID ssj0009892
Score 2.5898843
Snippet Nonconvex optimization arises in many areas of computational science and engineering. However, most nonconvex optimization algorithms are only known to have...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 700
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Convergence
Critical point
Factorization
Iterative methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Optimization
Sparsity
Tensors
Theoretical
Variables
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagMLAA5RCFgjwwcMgid-IJlQrEgEoHQAiGKLZjqGjT0gYE_573UocIJLqwRXJsRXnX53cSsu-4oHi5q5kPaJR5MpGMY7E7XCZUygMRBoUf8u4q7HSi-3veNQ63iUmrLHVioajVUKKP_MThwHy2C_eB09Erw6lRGF01IzTmyQJ2ScDRDV3_oWq6GxVDkUGQfAaw2SujmtPSOW5j2lrILJAxZv20SxXY_BUfLczOxcp_P3iVLBvASVtTDqmTuTRbI3Uj0hN6YPpOH66TxxadTgDof9I2JqNjXWZOW_0nODZ_HlDAt7QzzIpE9Q96DcpmYKo46RkYQ0XxAYzjC2yHO20vAxxLb0foU9ggtxfnN-1LZmYvMOlGTs7sJEqFjlRiC0dYSvhagqjbgcbIY6jDQDipcrjUCZeJr7inQ4AOwlGB9rgE3LNJatkwS7cItaSWwk89xHpepCKhU-n5buAFEZpQt0Gs8s_H0jQmx_kY_bhqqYzEioFYMRIrthrk6HvLaNqVY9bLzZJAsRHQSVxRp0GOSxJXy38etj37sB2y5BQ8hRmCTVLLx2_pLlmU73lvMt4ruPMLktLpUQ
  priority: 102
  providerName: ProQuest
Title A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update
URI https://link.springer.com/article/10.1007/s10915-017-0376-0
https://www.proquest.com/docview/2918313140
Volume 72
WOSCitedRecordID wos000406014800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7E-yh48-GAh7-wea6kIai2-ED2E7CarxTYtTRT9986miVVRQS8hkN0lzO7MfLPzAti2bBS83FbURTRKHRlKynWyOxoTUcw94Xv5PeT1id9qsZsb3i7yuNMy2r10SeaS-kOyGzd1oJlPDeQKinb6FGo7pvs1nF9cjyvtsrwTMnKPSxErO6Ur87slPiujMcL84hTNdc3h_L_-cgHmCmhJ6qOzsAgTcbIEs6fvdVnTJVgsWDklO0W96d1luKuTUeX_7itp6CB0nY-ZkXr3vj_sZA89griWtPpJHqD-Qs5QyPSK7E1ygEowIvoFleIjTkdbtpMgfiVXA32XsAJXh83LxhEtei5QaTMro2bIYqFYFJrCEkYkXCWRxU1PaY-jr3xPWHFkcalCLkM34o7yETIIK_KUwyXinVWoJP0kXgNiSCWFGzsa4zksYkLF0nFtz_GYVp12FYyS-IEsCpLrvhjdYFxKWRMzQGIGmpiBUYW99ymDUTWO3wZvljsaFIyZBhZHGWbaaFZWYb_cwfHnHxdb_9PoDZix8iOgAwU3oZINn-ItmJbPWScd1mDqoNlqn9dg8tin-Gy7t7X8DL8BcV_mrw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvLeUhthTwASQeskgcJ7EPCC2FqtUuC4cWVeohJH6Uim126QZK_xS_kZk8iECitx64RUpsyfE3M589L4BHIkLFqyPPY2SjXJrccE3J7niYsE4nRZrU95Afx-lkog4O9Icl-NnlwlBYZacTa0VtZ4buyF8IjeALIzwPvJp_5dQ1iryrXQuNBhYjd36GR7bFy903uL-Phdh-u7e1w9uuAtxESlQ8zJUrvLJ5WIgisEXsDYI4TDz51FKfJoVwVmjjc23y2GrpUzSKhbCJl9qgRcd5r8BVGamU5GqU8r7Ir6qbMKPgxhxpuuy8qE2qng4pTC7lAco0D_60gz25_csfW5u57bX_7QfdgNWWULNhIwHrsOTKm7DeqqwFe9LW1X56Cw6HrOlwMD1nWxRsT3mnFRtOj3AZ1ecThvydTWZlHYj_g71HZXrSZqmy12jsLaMHNP5fcDiu77hEns7253Rnchv2L2WRd2C5nJXuLrDAeFPEThKXlcqqwjsj4yiRiSKKEA0g6HY6M23hder_Mc36ktEEjgzBkRE4smAAz34PmTdVRy76eLMDRNYqoEXWo2EAzztI9a__OdnGxZM9hOs7e-_G2Xh3MroHK6LGM0VDbsJydfrN3Ydr5nt1vDh9UEsGg0-XjbRfTk9H8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hQGg8MFqGVuiYH3gAJqv5cD782HWrmIBSaYCQeIhiO2YVbVo1AcF_v3OaUIZgEuItkj8U2T7f73x3vwPYdVy8eLmrqYdolDIZS8pNsjsaEyrhvgj84h3y4jjo9cLLS94v65xmVbR75ZKc5TQYlqY0b02Ubj1JfOO2CToLqIUSQtFmX2Imjt6Y678v5qy7YVEVGSXJo4ibWeXWfGmKfxXTHG0-c5AWeqf78d1_vA5rJeQk7dkZqcFCktZh9eSRrzWrQ60U8YzslTzU-xtw1SazigDDB9IxwekmTzMn7eH1eDrI_4wI4l3SG6dF4Po9OcXLZ1RmdZLvqBwVMR-oLG9wONq4gxRxLTmfmDeGT3De_XnWOaRlLQYq3dDJqR2HidChim3hCEsJT0sUfdvXxhMZ6MAXTqIcLnXMZewpznSAUEI4yteMS8RBm7CYjtPkMxBLaim8hBnsx0IVCp1I5rk-80OjUt0GWNVGRLIkKjf1MobRnGLZLGaEixmZxYysBhw8DpnMWDr-17lZ7W5UCmwWORzvNttFc7MB36rdnDe_OtnWm3p_hZX-j250_Kt3tA0fnOI0mFjCJizm09vkCyzLu3yQTXeKY_wXWkvvDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Globally+Convergent+Algorithm+for+Nonconvex+Optimization+Based+on+Block+Coordinate+Update&rft.jtitle=Journal+of+scientific+computing&rft.au=Xu%2C+Yangyang&rft.au=Yin%2C+Wotao&rft.date=2017-08-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=72&rft.issue=2&rft.spage=700&rft.epage=734&rft_id=info:doi/10.1007%2Fs10915-017-0376-0&rft.externalDocID=10_1007_s10915_017_0376_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon