Best proximity results in metric spaces endowed with a hyperconvex structure

In the current article, we focus on hyperconvex metric spaces and survey the existence of best proximity points and optimal pair of fixed points for cyclic and noncyclic relatively u -continuous mappings which are r -condensing by applying a suitable measure of noncompactness. The method of the proo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fixed point theory and algorithms for sciences and engineering Ročník 2025; číslo 1; s. 25 - 20
Hlavní autoři: Gabeleh, Moosa, Markin, Jack
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 19.09.2025
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2730-5422, 2730-5422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the current article, we focus on hyperconvex metric spaces and survey the existence of best proximity points and optimal pair of fixed points for cyclic and noncyclic relatively u -continuous mappings which are r -condensing by applying a suitable measure of noncompactness. The method of the proof of our main results relies on the fact that every hyperconvex metric space ( M , d ) can be isometrically embedded into the Banach space ℓ ∞ ( M ) . Another important tool which will be used in the proof of the existence theorems is to show that the proximal pair of every nonempty and admissible pair in a hyperconvex metric space M is also nonempty and admissible.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2730-5422
2730-5422
DOI:10.1186/s13663-025-00807-3