Clustering by compression

We present a new method for clustering based on compression. The method does not use subject-specific features or background knowledge, and works as follows: First, we determine a parameter-free, universal, similarity distance, the normalized compression distance or NCD, computed from the lengths of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 51; H. 4; S. 1523 - 1545
Hauptverfasser: Cilibrasi, R., Vitanyi, P.M.B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.04.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new method for clustering based on compression. The method does not use subject-specific features or background knowledge, and works as follows: First, we determine a parameter-free, universal, similarity distance, the normalized compression distance or NCD, computed from the lengths of compressed data files (singly and in pairwise concatenation). Second, we apply a hierarchical clustering method. The NCD is not restricted to a specific application area, and works across application area boundaries. A theoretical precursor, the normalized information distance, co-developed by one of the authors, is provably optimal. However, the optimality comes at the price of using the noncomputable notion of Kolmogorov complexity. We propose axioms to capture the real-world setting, and show that the NCD approximates optimality. To extract a hierarchy of clusters from the distance matrix, we determine a dendrogram (ternary tree) by a new quartet method and a fast heuristic to implement it. The method is implemented and available as public software, and is robust under choice of different compressors. To substantiate our claims of universality and robustness, we report evidence of successful application in areas as diverse as genomics, virology, languages, literature, music, handwritten digits, astronomy, and combinations of objects from completely different domains, using statistical, dictionary, and block sorting compressors. In genomics, we presented new evidence for major questions in Mammalian evolution, based on whole-mitochondrial genomic analysis: the Eutherian orders and the Marsupionta hypothesis against the Theria hypothesis.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2005.844059