Bidirectional Deep Learning Decoder for Polar Codes in Flat Fading Channels
One of the main issues facing in the future wireless communications is ultra-reliable and low-latency communication. Polar codes are well-suited for such applications, and recent advancements in deep learning have shown promising results in enhancing polar code decoding performance. We propose a rob...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 149580 - 149592 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2024
|
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | One of the main issues facing in the future wireless communications is ultra-reliable and low-latency communication. Polar codes are well-suited for such applications, and recent advancements in deep learning have shown promising results in enhancing polar code decoding performance. We propose a robust decoder based on a bidirectional long short-term memory (Bi-LSTM) network, which processes sequences in both forward and backward directions simultaneously. This approach leverages the strengths of bidirectional recurrent neural networks to improve the decoding of polar-coded short packets. Our study focuses on packet transmission over frequency-flat quasi-static Rayleigh fading channels, using a simple codebook originally designed for additive white Gaussian noise channels. We evaluate the packet error rate for various signal-to-noise ratio levels using different modulation schemes. The simulation results demonstrate that the proposed Bi-LSTM-based decoder closely approaches the theoretical outage performance and achieves significant coding gains in fading channels. Furthermore, the proposed decoder outperforms convolutional neural network and deep neural network-based decoders, validating its superiority in decoding polar codes for short packet transmission in challenging wireless environments. |
|---|---|
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2024.3476471 |