Rank-density-based multiobjective genetic algorithm and benchmark test function study
Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accu...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 7; H. 4; S. 325 - 343 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.08.2003
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Concerns the use of evolutionary algorithms (EA) in solving multiobjective optimization problems (MOP). We propose the use of a rank-density-based genetic algorithm (RDGA) that synergistically integrates selected features from existing algorithms in a unique way. A new ranking method, automatic accumulated ranking strategy, and a "forbidden region" concept are introduced, completed by a revised adaptive cell density evaluation scheme and a rank-density-based fitness assignment technique. In addition, four types of MOP features, such as discontinuous and concave Pareto front, local optimality, high-dimensional decision space and high-dimensional objective space are exploited and the corresponding MOP test functions are designed. By examining the selected performance indicators, RDGA is found to be statistically competitive with four state-of-the-art algorithms in terms of keeping the diversity of the individuals along the tradeoff surface, tending to extend the Pareto front to new areas and finding a well-approximated Pareto optimal front. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2003.812220 |