Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model

Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tsf modeling. However, the rc is difficult to measure but it can be accurately estimate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Agricultural water management Ročník 276; s. 108061
Hlavní autori: Xing, Liwen, Zhao, Lu, Cui, Ningbo, Liu, Chunwei, Guo, Li, Du, Taisheng, Wu, Zongjun, Gong, Daozhi, Jiang, Shouzheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2023
Predmet:
ISSN:0378-3774, 1873-2283
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tsf modeling. However, the rc is difficult to measure but it can be accurately estimated using the Jarvis canopy resistance model (JA). Our objectives were to evaluate the rc of apple trees calculated with an inverted PM model integrated with different versions of the JA model for different growth stages and to compare their accuracy using four optimization algorithms, the least squares method (LSM), genetic algorithm (GA), quantum particle swarm optimization (QPSO), and the mind evolutionary algorithm (MEA). We explored the effect of environmental constraint functions and parameter optimization of three environmental variables, vapor pressure deficit (VPD), net irradiance (Rn), and air temperature (Ta), and of soil water content (θa) on the accuracy of JA sub-models to calculate apple tree rc and Tsf. In our analysis, we used rainfed data from experiments on an apple orchard conducted during 2008–2010 at Wuwei City on the Loess Plateau of China. We compared 81 segmented JA sub-models (by canopy growth stage), comprising of the combination of the environmental constraint functions that were used to calculate rc. Moreover, the JA sub-models were optimized and results were compared to improve the accuracy of Tsf estimates with five empirical rc models, combined with the PM model. The results showed that sub-model JA3322, i.e., the third constraint for VPD, the third constraint for Rn, the second constraint for Ta, and the second constraint for θa attained the best estimate of rc with a coefficient of determination (R2 = 0.71), a Nash-Sutcliffe efficiency coefficient (NSE = 0.65), root mean squared error (RMSE = 1257.4 s m-1), and global performance indicator (GPI = 1.0) for the whole growth stage. The equivalent values for the partial canopy stage were 0.78, 0.72, 1203.3 s m-1 and 0.99, and the values for the dense canopy stage were 0.78, 0.77, 445.6 s m-1 and 0.97, respectively. Segmented JA models based on the leaf area index threshold significantly improved the accuracy of rc estimation, where the median R2 and NSE were improved by 7.1 % and 12.4 % in the partial canopy stage and by 12.2 % and 13.4 % in the dense canopy stage. Despite pointing out the best environmental constraint functions of the JA model in the different growth stages, results indicated that the MEA yielded the most accurate estimates of rc, followed by QPSO, GA, and LSM. Moreover, the JA model with environmental constraints was the most accurate method to estimate the apple tree Tsf, and MEA was the most suitable parameter optimization algorithm. Overall, the findings of this study provide accurate actual water consumption information of apple trees using easily accessible meteorological data for the effective day-to-day water management decision-making of rain-fed apple tree orchards on the Loess Plateau of China previously. •Jarvis was superior to other empirical models for canopy resistance estimation.•Jarvis segmented by canopy growth stage gave a more accurate estimation.•Finding the most appropriate Jarvis model for apple tree canopy resistance.•Intelligence optimization algorithms improved the accuracy of the Jarvis models.
AbstractList Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tsf modeling. However, the rc is difficult to measure but it can be accurately estimated using the Jarvis canopy resistance model (JA). Our objectives were to evaluate the rc of apple trees calculated with an inverted PM model integrated with different versions of the JA model for different growth stages and to compare their accuracy using four optimization algorithms, the least squares method (LSM), genetic algorithm (GA), quantum particle swarm optimization (QPSO), and the mind evolutionary algorithm (MEA). We explored the effect of environmental constraint functions and parameter optimization of three environmental variables, vapor pressure deficit (VPD), net irradiance (Rn), and air temperature (Ta), and of soil water content (θa) on the accuracy of JA sub-models to calculate apple tree rc and Tsf. In our analysis, we used rainfed data from experiments on an apple orchard conducted during 2008–2010 at Wuwei City on the Loess Plateau of China. We compared 81 segmented JA sub-models (by canopy growth stage), comprising of the combination of the environmental constraint functions that were used to calculate rc. Moreover, the JA sub-models were optimized and results were compared to improve the accuracy of Tsf estimates with five empirical rc models, combined with the PM model. The results showed that sub-model JA3322, i.e., the third constraint for VPD, the third constraint for Rn, the second constraint for Ta, and the second constraint for θa attained the best estimate of rc with a coefficient of determination (R2 = 0.71), a Nash-Sutcliffe efficiency coefficient (NSE = 0.65), root mean squared error (RMSE = 1257.4 s m-1), and global performance indicator (GPI = 1.0) for the whole growth stage. The equivalent values for the partial canopy stage were 0.78, 0.72, 1203.3 s m-1 and 0.99, and the values for the dense canopy stage were 0.78, 0.77, 445.6 s m-1 and 0.97, respectively. Segmented JA models based on the leaf area index threshold significantly improved the accuracy of rc estimation, where the median R2 and NSE were improved by 7.1 % and 12.4 % in the partial canopy stage and by 12.2 % and 13.4 % in the dense canopy stage. Despite pointing out the best environmental constraint functions of the JA model in the different growth stages, results indicated that the MEA yielded the most accurate estimates of rc, followed by QPSO, GA, and LSM. Moreover, the JA model with environmental constraints was the most accurate method to estimate the apple tree Tsf, and MEA was the most suitable parameter optimization algorithm. Overall, the findings of this study provide accurate actual water consumption information of apple trees using easily accessible meteorological data for the effective day-to-day water management decision-making of rain-fed apple tree orchards on the Loess Plateau of China previously. •Jarvis was superior to other empirical models for canopy resistance estimation.•Jarvis segmented by canopy growth stage gave a more accurate estimation.•Finding the most appropriate Jarvis model for apple tree canopy resistance.•Intelligence optimization algorithms improved the accuracy of the Jarvis models.
Accurate estimates of plant transpiration (Tₛf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tₛf modeling. However, the rc is difficult to measure but it can be accurately estimated using the Jarvis canopy resistance model (JA). Our objectives were to evaluate the rc of apple trees calculated with an inverted PM model integrated with different versions of the JA model for different growth stages and to compare their accuracy using four optimization algorithms, the least squares method (LSM), genetic algorithm (GA), quantum particle swarm optimization (QPSO), and the mind evolutionary algorithm (MEA). We explored the effect of environmental constraint functions and parameter optimization of three environmental variables, vapor pressure deficit (VPD), net irradiance (Rₙ), and air temperature (Tₐ), and of soil water content (θₐ) on the accuracy of JA sub-models to calculate apple tree rc and Tₛf. In our analysis, we used rainfed data from experiments on an apple orchard conducted during 2008–2010 at Wuwei City on the Loess Plateau of China. We compared 81 segmented JA sub-models (by canopy growth stage), comprising of the combination of the environmental constraint functions that were used to calculate rc. Moreover, the JA sub-models were optimized and results were compared to improve the accuracy of Tₛf estimates with five empirical rc models, combined with the PM model. The results showed that sub-model JA₃₃₂₂, i.e., the third constraint for VPD, the third constraint for Rₙ, the second constraint for Tₐ, and the second constraint for θₐ attained the best estimate of rc with a coefficient of determination (R² = 0.71), a Nash-Sutcliffe efficiency coefficient (NSE = 0.65), root mean squared error (RMSE = 1257.4 s m⁻¹), and global performance indicator (GPI = 1.0) for the whole growth stage. The equivalent values for the partial canopy stage were 0.78, 0.72, 1203.3 s m⁻¹ and 0.99, and the values for the dense canopy stage were 0.78, 0.77, 445.6 s m⁻¹ and 0.97, respectively. Segmented JA models based on the leaf area index threshold significantly improved the accuracy of rc estimation, where the median R² and NSE were improved by 7.1 % and 12.4 % in the partial canopy stage and by 12.2 % and 13.4 % in the dense canopy stage. Despite pointing out the best environmental constraint functions of the JA model in the different growth stages, results indicated that the MEA yielded the most accurate estimates of rc, followed by QPSO, GA, and LSM. Moreover, the JA model with environmental constraints was the most accurate method to estimate the apple tree Tₛf, and MEA was the most suitable parameter optimization algorithm. Overall, the findings of this study provide accurate actual water consumption information of apple trees using easily accessible meteorological data for the effective day-to-day water management decision-making of rain-fed apple tree orchards on the Loess Plateau of China previously.
ArticleNumber 108061
Author Liu, Chunwei
Guo, Li
Zhao, Lu
Cui, Ningbo
Jiang, Shouzheng
Du, Taisheng
Wu, Zongjun
Gong, Daozhi
Xing, Liwen
Author_xml – sequence: 1
  givenname: Liwen
  surname: Xing
  fullname: Xing, Liwen
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China
– sequence: 2
  givenname: Lu
  surname: Zhao
  fullname: Zhao, Lu
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China
– sequence: 3
  givenname: Ningbo
  surname: Cui
  fullname: Cui, Ningbo
  email: cuiningbo@126.com
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China
– sequence: 4
  givenname: Chunwei
  surname: Liu
  fullname: Liu, Chunwei
  organization: Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
– sequence: 5
  givenname: Li
  surname: Guo
  fullname: Guo, Li
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China
– sequence: 6
  givenname: Taisheng
  surname: Du
  fullname: Du, Taisheng
  organization: Center for Agricultural Water Research in China, China Agricultural University, Beijing 100091, PR China
– sequence: 7
  givenname: Zongjun
  surname: Wu
  fullname: Wu, Zongjun
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China
– sequence: 8
  givenname: Daozhi
  surname: Gong
  fullname: Gong, Daozhi
  organization: State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Science, Beijing 100081, PR China
– sequence: 9
  givenname: Shouzheng
  surname: Jiang
  fullname: Jiang, Shouzheng
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China
BookMark eNqFkD1PwzAQhi0EEm3hF7BkZEnxVxJ3YKgqvqQiGGC2XPvaukrtYLsg-PW4DRMDLGfd6X3OumeIjp13gNAFwWOCSX21GavVh0pjiinNE4FrcoQGRDSspFSwYzTArBElaxp-ioYxbjDGHPNmgOy061ooUoB9US52NqhkvSsgJrtVCUyxi9atirSG4hncVrny0bsENq2LrTfQFjZ3q3CIfuynvsuk_crtRoV3G_vYGTpZqjbC-c87Qq-3Ny-z-3L-dPcwm85LzQRJ5aRpiFhoozHntGJ8AQxqw2rNCZia0kVFDFELZoTmCrioKMba1FjxJZ8QDmyELvu9XfBvu3yF3NqooW2VA7-LkpEqf1RNKpGjrI_q4GMMsJRdyDeHT0mw3IuVG3kQK_diZS82U5NflLbp4CwLtO0_7HXPQjbwbiHIqC04DcYG0Ekab__kvwEv35kc
CitedBy_id crossref_primary_10_1016_j_agwat_2024_109193
crossref_primary_10_3390_agronomy14071531
crossref_primary_10_1016_j_resconrec_2024_107528
crossref_primary_10_1002_cem_3515
crossref_primary_10_1002_cem_3537
crossref_primary_10_1016_j_agwat_2024_108745
crossref_primary_10_1016_j_resconrec_2025_108390
crossref_primary_10_1016_j_agwat_2023_108665
crossref_primary_10_1016_j_agwat_2024_109238
crossref_primary_10_1016_j_agwat_2024_108924
crossref_primary_10_1016_j_compag_2023_108253
crossref_primary_10_1016_j_jhydrol_2024_131375
crossref_primary_10_1016_j_plaphy_2023_107939
crossref_primary_10_1016_j_agrformet_2025_110736
crossref_primary_10_1016_j_agwat_2023_108620
crossref_primary_10_1016_j_compag_2023_108139
Cites_doi 10.1029/2000WR900324
10.1093/jexbot/49.suppl_1.387
10.1016/j.snb.2017.12.026
10.1016/j.jhydrol.2020.125435
10.1016/j.jhydrol.2016.11.041
10.1016/j.jhydrol.2016.04.002
10.1061/JRCEA4.0000699
10.1016/j.compeleceng.2021.107456
10.1007/BF00317623
10.1016/j.jhydrol.2013.07.033
10.1016/j.scs.2020.102690
10.1002/2013WR014818
10.1016/j.agwat.2020.106447
10.1002/hyp.270
10.1016/S0079-1946(98)00052-4
10.1097/00010694-194704000-00003
10.1016/j.agwat.2018.02.021
10.1016/j.agrformet.2003.09.006
10.1016/j.jhydrol.2021.126526
10.1016/j.agrformet.2015.04.002
10.1016/j.proeng.2011.08.460
10.3390/w12020517
10.1016/j.asoc.2020.106894
10.1002/wat2.1168
10.1016/j.agrformet.2014.05.012
10.1016/j.agrformet.2019.02.035
10.1104/pp.17.00912
10.1109/CEC.2004.1330875
10.1016/j.agwat.2016.07.015
10.3389/fpls.2013.00138
10.4081/jae.2013.411
10.1109/ICNN.1995.488968
10.1016/j.agrformet.2019.01.031
10.1016/j.agrformet.2014.11.010
10.1016/j.jhydrol.2013.03.002
10.1007/s10994-020-05900-9
10.1016/j.agwat.2016.09.016
10.1016/j.compag.2015.02.002
10.1007/s11104-007-9399-x
10.1016/j.enconman.2019.112236
10.1007/s00468-016-1513-3
10.1002/qj.49711649213
10.1029/2009WR008484
10.2480/agrmet.67.3.1
10.1016/j.agwat.2020.106622
10.1016/j.agrformet.2008.02.001
10.3389/fpls.2022.839378
10.1051/agro:19830603
10.1016/j.agwat.2005.03.007
10.1016/j.oceaneng.2018.04.039
10.1016/j.envexpbot.2018.12.007
10.1016/0168-1923(91)90004-A
10.1002/2014JG002623
10.1016/j.jhydrol.2021.127207
10.1042/BSR20080061
10.1029/2007WR006761
10.1071/FP02181
10.1016/j.jhydrol.2020.124981
10.1016/j.agwat.2020.106112
10.1016/j.agwat.2011.12.014
10.1016/S2095-3119(15)61307-7
10.1016/j.oceano.2021.10.004
10.1016/0168-1923(93)90036-H
10.1016/j.agrformet.2018.12.003
10.1016/j.ultras.2021.106503
10.1175/BAMS-D-15-00173.1
10.1016/j.agrformet.2017.01.005
10.1029/93WR00333
10.1175/JHM-D-19-0191.1
10.1007/s00271-003-0087-1
10.1016/B0-12-348530-4/00502-6
10.1016/0168-1923(88)90003-2
10.1016/j.measurement.2021.110325
10.1016/j.agrformet.2009.03.008
10.1016/j.jhydrol.2021.127028
10.1093/treephys/3.4.309
10.1016/j.agrformet.2022.108824
10.1029/WR021i003p00297
10.1007/s10346-017-0883-y
10.1111/1365-3040.ep11580512
10.1021/acs.jafc.5b01309
10.1029/2007WR006562
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agwat.2022.108061
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID 10_1016_j_agwat_2022_108061
S0378377422006084
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
VH1
WUQ
XPP
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-c381t-97718bcdc0442534be3e6d36c41ed622b51d1ab3d8c4ae485200cd60a4f4914e3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899245100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3774
IngestDate Fri Oct 03 00:14:48 EDT 2025
Tue Nov 18 20:27:43 EST 2025
Sat Nov 29 07:17:23 EST 2025
Fri Feb 23 02:39:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Canopy resistance
Constraint function
Swarm intelligence optimization algorithms
Growth period segmentation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-97718bcdc0442534be3e6d36c41ed622b51d1ab3d8c4ae485200cd60a4f4914e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1016/j.agwat.2022.108061
PQID 3153815958
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153815958
crossref_primary_10_1016_j_agwat_2022_108061
crossref_citationtrail_10_1016_j_agwat_2022_108061
elsevier_sciencedirect_doi_10_1016_j_agwat_2022_108061
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Kang, Tong, Ding, Li, Du (bib95) 2019; 159
Li, Kang, Li, Jiang, Tong, Ding, Li, Du (bib54) 2016; 178
Wu, Cui, Hu, Gong, Wang, Feng, Jiang, Lv, Han, Xing (bib86) 2021; 603
Jarvis (bib37) 1997; 273
Jiang, Kang, Tong, Li (bib39) 2016; 538
Stannard (bib77) 1993; 29
Samanta, Clayton, Mackay, Kruger, Ewers (bib71) 2008; 44
Shan, Ju, Migliavacca, Martini, Guanter, Chen, Goulas, Zhang (bib73) 2019; 268
Feng, Gong, Jiang, Zhao, Cui (bib20) 2020; 203
Kučera, Brito, Jiménez, Urban (bib44) 2016; 31
Sun, J., Feng, B. and Xu, W., 2004. Particle swarm optimization with particles having quantum behavior, Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753). IEEE. pp. 325–331.
Liu, C., 2012. Water transport mechanism and water consumption simulation of mature apple orchard in arid region. China Agricultural University. Beijing. 115 pp.
Liu, Du, Li, Kang, Li, Tong (bib57) 2012; 104
(accessed 13 March 2021).
.
Holland (bib33) 1975
Whitley, Zeppel, Armstrong, Macinnis-Ng, Yunusa, Eamus (bib85) 2008; 305
Smith (bib75) 2020
Zhang, Li, Liu, Ouyang, Fang, Mu, Gao (bib93) 2021; 95
Wang, Guan, Liu, Soulsby, Tetzlaff, Zhang (bib82) 2020; 587
Facchi, Gharsallah, Gandolfi (bib18) 2013; 44
Yan, Oue (bib88) 2011; 67
(accessed 10 October 2021).
Massman, Kaufmann (bib63) 1991; 54
NBSPRC, National Bureau of statistics of the People's Republic of China, 2021. Database of the National Bureau of Statistics of China.
Katerji, Perrier, Renard, Oulid Aissa (bib41) 1983; 3
Liu, Yang, Song (bib58) 2011; 15
Li, Zhang, Kang, Tong, Du, Hao, Zhao (bib51) 2015; 208
Miao, Wu, Xie, Li (bib66) 2017; 15
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agricultural Organization of the United Nations (FAO). Rome, Italy.
Bai, Li, Zhou, Yang, Yu, Wang, Liu, Wang (bib6) 2019; 271
Harris, Huntingford, Cox, Gash, Malhi (bib31) 2004; 122
Irmak, Mutiibwa, Irmak, Arkebauer, Weiss, Martin, Eisenhauer (bib36) 2008; 148
Leuning, Zhang, Rajaud, Cleugh, Tu (bib47) 2008; 44
Matheny, Bohrer, Stoy, Baker, Black, Desai, Dietze (bib64) 2014; 119
Li, Kang, Zhang, Li, Hao, Ortega-Farias, Guo, Ji, Wang, Jiang (bib52) 2013; 489
Bugajny, Furmańczyk (bib9) 2022; 64
Garcia-Santos, Bruijnzeel, Dolman (bib24) 2009; 149
Lindroth (bib55) 1985; 21
Wang, Guan, Deng, Simmons (bib81) 2014; 50
Wang, Tang, Li, Liu, Luo (bib84) 2018; 162
Lamb, Shaw (bib45) 2016; 97
Abd-Elmaboud, Abdel-Gawad, El-Alfy, Ezzeldin (bib1) 2021; 34
Hoshika, Fares, Savi, Gruening, Goded, De Marco, Sicard, Paoletti (bib34) 2017; 234
Dong, Zhu, Jia, Shao, Han, Qiao, Bai, Tang (bib17) 2022; 604
Alizadeh, Ghaderi Bafti, Kamangir, Zhang, Wright, Franz (bib3) 2021; 601
Chen, Hsu, Duan, Wang, Wei, Muhammad (bib11) 2020; 234
Stewart (bib78) 1988
Ghimire, Lubczynski, Bruijnzeel, Chavarro-Rincón (bib26) 2014; 197
Granier (bib28) 1987; 3
Lu, He (bib61) 2021; 99
Zhang, Kimball, Running (bib92) 2016; 3
Srivastava, Panda, Chakraborty, Halder (bib76) 2018; 202
Dekker, Bouten, Bosveld (bib15) 2001; 15
Garcia, Lôndero (bib23) 2021; 12
488968.
He, Qin (bib32) 2021; 13
Li (bib49) 1991; 63
Li, Xu, Zhu, He (bib50) 2022; 187
Landsberg, Butler (bib46) 1980; 3
Yates, Ashworth, Zheng, Zhang, Knuteson, van Wessenbeeck (bib90) 2015; 63
Daszkowska-Golec, Szarejko (bib14) 2013; 4
Campbell, Campbell (bib10) 2005
Kostner, Schulze, Kelliher, Hollinger (bib43) 1992; 91
Lu, Yunusa, Walker, Muller (bib60) 2003; 30
Jones (bib40) 1998; 49
Chia, Huang, Koo (bib12) 2021; 243
Liu, Xu, Wang, Lv, Li (bib59) 2020; 590
Ribeiro, Moniz (bib70) 2020; 109
Novák (bib68) 1998; 23
Bohaienko, Gladky, Romashchenko, Matiash (bib8) 2021; 390
Tang, Yin, Yang, Yu, Guo (bib80) 2021; 66
FAOSTAT, Food and Agriculture Organization of the United Nations, 2019. Fao Statistical Databases.
Lhomme (bib48) 2001; 37
Ahmadi, Mehdizadeh, Mohammadi, Pham, Doan, Vo (bib2) 2021; 244
Colman (bib13) 1947; 63
Gassmann, Tonti, Burek, Pérez (bib25) 2019; 266–267
Fu, Sun, Luo (bib22) 2016; 177
Guyot, Fan, Oestergaard, Whitley, Gibbes, Arsac, Lockington (bib29) 2017; 544
Hardwick, Toumi, Pfeifer, Turner, Nilus, Ewers (bib30) 2015; 201
Li, Kang, Zhang, Ortega-Farias, Li, Du, Tong, Wang, Ingman, Guo (bib53) 2013; 503
Zhao, Qiu, Xiong, Paw U, Gentine, Chen (bib94) 2020; 21
Jensen, Robb, Franzoy (bib38) 1970; 96
Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks. IEEE. pp. 1942–1948.
Allen, Pruitt, Wright, Howell (bib5) 2006; 81
Birdi, Muraleedharan, D'Hooge, Bertrand (bib7) 2021; 116
Irmak, Mutiibwa (bib35) 2010; 46
Forster, Kim, Kunz, Abuseif, Chulliparambil, Srichandra, Michael (bib21) 2022; 315
Wang, Hu, Li, Chen (bib83) 2009; 29
Xi, Qi, Zou, Raghavan, Sun (bib87) 2015; 113
Merilo, Yarmolinsky, Jalakas, Parik, Tulva, Rasulov, Kilk, Kollist (bib65) 2018; 176
Sarker, Newton (bib72) 2007
Yan, Huang, Zhang, Gerrits, Wang, Zhang, Zhao (bib89) 2020; 12
Dolman (bib16) 1993; 65
Shuttleworth, Gurney (bib74) 1990; 116
Luo, Jia, Qiao, Duan (bib62) 2018; 259
Ortega-Farias, Olioso, Antonioletti, Brisson (bib69) 2004; 23
Gowdy, Pieri, Suter, Marguerit, Destrac-Irvine, Gambetta, van Leeuwen (bib27) 2022; 13
Yu, Cai, Zheng, Li, Wang (bib91) 2017; 16
10.1016/j.agwat.2022.108061_bib67
Liu (10.1016/j.agwat.2022.108061_bib57) 2012; 104
Li (10.1016/j.agwat.2022.108061_bib50) 2022; 187
Allen (10.1016/j.agwat.2022.108061_bib5) 2006; 81
Smith (10.1016/j.agwat.2022.108061_bib75) 2020
Kučera (10.1016/j.agwat.2022.108061_bib44) 2016; 31
Ribeiro (10.1016/j.agwat.2022.108061_bib70) 2020; 109
Landsberg (10.1016/j.agwat.2022.108061_bib46) 1980; 3
Srivastava (10.1016/j.agwat.2022.108061_bib76) 2018; 202
Wang (10.1016/j.agwat.2022.108061_bib83) 2009; 29
Jiang (10.1016/j.agwat.2022.108061_bib39) 2016; 538
Bai (10.1016/j.agwat.2022.108061_bib6) 2019; 271
Facchi (10.1016/j.agwat.2022.108061_bib18) 2013; 44
Yates (10.1016/j.agwat.2022.108061_bib90) 2015; 63
Merilo (10.1016/j.agwat.2022.108061_bib65) 2018; 176
Ahmadi (10.1016/j.agwat.2022.108061_bib2) 2021; 244
Li (10.1016/j.agwat.2022.108061_bib54) 2016; 178
Bugajny (10.1016/j.agwat.2022.108061_bib9) 2022; 64
Li (10.1016/j.agwat.2022.108061_bib51) 2015; 208
10.1016/j.agwat.2022.108061_bib56
Leuning (10.1016/j.agwat.2022.108061_bib47) 2008; 44
Stewart (10.1016/j.agwat.2022.108061_bib78) 1988
Abd-Elmaboud (10.1016/j.agwat.2022.108061_bib1) 2021; 34
10.1016/j.agwat.2022.108061_bib19
Irmak (10.1016/j.agwat.2022.108061_bib35) 2010; 46
Lu (10.1016/j.agwat.2022.108061_bib60) 2003; 30
Wang (10.1016/j.agwat.2022.108061_bib84) 2018; 162
Sarker (10.1016/j.agwat.2022.108061_bib72) 2007
Jones (10.1016/j.agwat.2022.108061_bib40) 1998; 49
Chia (10.1016/j.agwat.2022.108061_bib12) 2021; 243
Harris (10.1016/j.agwat.2022.108061_bib31) 2004; 122
Garcia-Santos (10.1016/j.agwat.2022.108061_bib24) 2009; 149
Granier (10.1016/j.agwat.2022.108061_bib28) 1987; 3
Li (10.1016/j.agwat.2022.108061_bib49) 1991; 63
Garcia (10.1016/j.agwat.2022.108061_bib23) 2021; 12
Dong (10.1016/j.agwat.2022.108061_bib17) 2022; 604
Katerji (10.1016/j.agwat.2022.108061_bib41) 1983; 3
Lu (10.1016/j.agwat.2022.108061_bib61) 2021; 99
Wang (10.1016/j.agwat.2022.108061_bib81) 2014; 50
Novák (10.1016/j.agwat.2022.108061_bib68) 1998; 23
Lindroth (10.1016/j.agwat.2022.108061_bib55) 1985; 21
Tang (10.1016/j.agwat.2022.108061_bib80) 2021; 66
Yan (10.1016/j.agwat.2022.108061_bib89) 2020; 12
Feng (10.1016/j.agwat.2022.108061_bib20) 2020; 203
Liu (10.1016/j.agwat.2022.108061_bib59) 2020; 590
Whitley (10.1016/j.agwat.2022.108061_bib85) 2008; 305
Hoshika (10.1016/j.agwat.2022.108061_bib34) 2017; 234
Matheny (10.1016/j.agwat.2022.108061_bib64) 2014; 119
Shuttleworth (10.1016/j.agwat.2022.108061_bib74) 1990; 116
10.1016/j.agwat.2022.108061_bib42
Guyot (10.1016/j.agwat.2022.108061_bib29) 2017; 544
Alizadeh (10.1016/j.agwat.2022.108061_bib3) 2021; 601
Birdi (10.1016/j.agwat.2022.108061_bib7) 2021; 116
Ghimire (10.1016/j.agwat.2022.108061_bib26) 2014; 197
Lhomme (10.1016/j.agwat.2022.108061_bib48) 2001; 37
Wang (10.1016/j.agwat.2022.108061_bib82) 2020; 587
Lamb (10.1016/j.agwat.2022.108061_bib45) 2016; 97
Daszkowska-Golec (10.1016/j.agwat.2022.108061_bib14) 2013; 4
He (10.1016/j.agwat.2022.108061_bib32) 2021; 13
Li (10.1016/j.agwat.2022.108061_bib52) 2013; 489
Massman (10.1016/j.agwat.2022.108061_bib63) 1991; 54
10.1016/j.agwat.2022.108061_bib4
Samanta (10.1016/j.agwat.2022.108061_bib71) 2008; 44
Campbell (10.1016/j.agwat.2022.108061_bib10) 2005
Forster (10.1016/j.agwat.2022.108061_bib21) 2022; 315
Miao (10.1016/j.agwat.2022.108061_bib66) 2017; 15
Colman (10.1016/j.agwat.2022.108061_bib13) 1947; 63
Holland (10.1016/j.agwat.2022.108061_bib33) 1975
Shan (10.1016/j.agwat.2022.108061_bib73) 2019; 268
Stannard (10.1016/j.agwat.2022.108061_bib77) 1993; 29
Luo (10.1016/j.agwat.2022.108061_bib62) 2018; 259
Bohaienko (10.1016/j.agwat.2022.108061_bib8) 2021; 390
Dekker (10.1016/j.agwat.2022.108061_bib15) 2001; 15
10.1016/j.agwat.2022.108061_bib79
Zhang (10.1016/j.agwat.2022.108061_bib93) 2021; 95
Chen (10.1016/j.agwat.2022.108061_bib11) 2020; 234
Hardwick (10.1016/j.agwat.2022.108061_bib30) 2015; 201
Jensen (10.1016/j.agwat.2022.108061_bib38) 1970; 96
Gowdy (10.1016/j.agwat.2022.108061_bib27) 2022; 13
Li (10.1016/j.agwat.2022.108061_bib53) 2013; 503
Wu (10.1016/j.agwat.2022.108061_bib86) 2021; 603
Zhao (10.1016/j.agwat.2022.108061_bib94) 2020; 21
Irmak (10.1016/j.agwat.2022.108061_bib36) 2008; 148
Zhang (10.1016/j.agwat.2022.108061_bib92) 2016; 3
Yan (10.1016/j.agwat.2022.108061_bib88) 2011; 67
Zhou (10.1016/j.agwat.2022.108061_bib95) 2019; 159
Kostner (10.1016/j.agwat.2022.108061_bib43) 1992; 91
Ortega-Farias (10.1016/j.agwat.2022.108061_bib69) 2004; 23
Fu (10.1016/j.agwat.2022.108061_bib22) 2016; 177
Yu (10.1016/j.agwat.2022.108061_bib91) 2017; 16
Xi (10.1016/j.agwat.2022.108061_bib87) 2015; 113
Jarvis (10.1016/j.agwat.2022.108061_bib37) 1997; 273
Liu (10.1016/j.agwat.2022.108061_bib58) 2011; 15
Gassmann (10.1016/j.agwat.2022.108061_bib25) 2019; 266–267
Dolman (10.1016/j.agwat.2022.108061_bib16) 1993; 65
References_xml – volume: 234
  start-page: 212
  year: 2017
  end-page: 221
  ident: bib34
  article-title: Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests
  publication-title: Agric. Meteorol.
– reference: Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks. IEEE. pp. 1942–1948.
– volume: 37
  start-page: 689
  year: 2001
  end-page: 699
  ident: bib48
  article-title: Stomatal control of transpiration: examination of the Jarvis-type representation of canopy resistance in relation to humidity
  publication-title: Water Resour. Res.
– volume: 176
  start-page: 851
  year: 2018
  end-page: 864
  ident: bib65
  article-title: Stomatal VPD RESPONSE: THERE IS MORE TO THE STORY Than ABA
  publication-title: Plant Physiol.
– volume: 603
  year: 2021
  ident: bib86
  article-title: Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China
  publication-title: J. Hydrol.
– start-page: 19
  year: 1988
  end-page: 35
  ident: bib78
  article-title: Modelling surface conductance of pine forest
  publication-title: Agric. Meteorol.
– volume: 538
  start-page: 194
  year: 2016
  end-page: 207
  ident: bib39
  article-title: Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China
  publication-title: J. Hydrol.
– volume: 3
  start-page: 29
  year: 1980
  end-page: 33
  ident: bib46
  article-title: Stomatal response to humidity: implications for transpiration
  publication-title: Plant Cell Environ.
– volume: 15
  start-page: 2449
  year: 2011
  end-page: 2453
  ident: bib58
  article-title: MIMO radar array synthesis using QPSO with normal distributed contraction-expansion factor
  publication-title: Procedia Eng.
– volume: 16
  start-page: 210
  year: 2017
  end-page: 220
  ident: bib91
  article-title: Towards a more flexible representation of water stress effects in the nonlinear Jarvis model
  publication-title: J. Integr. Agric.
– volume: 159
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib95
  article-title: Improved application of the Penman–Monteith model using an enhanced Jarvis model that considers the effects of nitrogen fertilization on canopy resistance
  publication-title: Environ. Exp. Bot.
– volume: 29
  start-page: 1379
  year: 1993
  end-page: 1392
  ident: bib77
  article-title: Comparison of penman-monteith, shuttleworth-wallace, and modified priestley-taylor evapotranspiration models for wildland vegetation in semiarid rangeland
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 449
  year: 1998
  end-page: 452
  ident: bib68
  article-title: A canopy resistance estimation method to calculate transpiration
  publication-title: Phys. Chem. Earth
– start-page: 28
  year: 2020
  ident: bib75
  article-title: Divergent Water Use Strategies of Temperate Tree Species Estimated from Continuous Sap Flow Measurements
– volume: 113
  start-page: 72
  year: 2015
  end-page: 80
  ident: bib87
  article-title: Calibrating RZWQM2 model using quantum-behaved particle swarm optimization algorithm
  publication-title: Comput. Electron. Agric.
– volume: 590
  year: 2020
  ident: bib59
  article-title: Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based
  publication-title: J. Hydrol.
– volume: 273
  start-page: 593
  year: 1997
  end-page: 610
  ident: bib37
  article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 46
  year: 2010
  ident: bib35
  article-title: On the dynamics of canopy resistance: generalized linear estimation and relationships with primary micrometeorological variables
  publication-title: Water Resour. Res.
– volume: 44
  year: 2008
  ident: bib47
  article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation
  publication-title: Water Resour. Res.
– volume: 187
  year: 2022
  ident: bib50
  article-title: A calibration method of DVL in integrated navigation system based on particle swarm optimization
  publication-title: Measurement
– volume: 29
  start-page: 165
  year: 2009
  end-page: 172
  ident: bib83
  article-title: Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides
  publication-title: Biosci. Rep.
– volume: 203
  year: 2020
  ident: bib20
  article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China
  publication-title: Energ. Convers. Manag.
– volume: 13
  start-page: 251
  year: 2021
  end-page: 267
  ident: bib32
  article-title: Adaptive optimization swarm algorithm ensemble model applied to the classification of unbalanced data
  publication-title: Intell. Inf. Manag.
– reference: >(accessed 13 March 2021).
– volume: 91
  start-page: 350
  year: 1992
  end-page: 359
  ident: bib43
  article-title: Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements
  publication-title: Oecologia
– volume: 197
  start-page: 76
  year: 2014
  end-page: 90
  ident: bib26
  article-title: Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal
  publication-title: Agric. Meteorol.
– reference: NBSPRC, National Bureau of statistics of the People's Republic of China, 2021. Database of the National Bureau of Statistics of China. <
– volume: 44
  start-page: 844
  year: 2013
  end-page: 850
  ident: bib18
  article-title: Evapotranspiration models for a maize agro-ecosystem in irrigated and rainfed conditions
  publication-title: J. Agric. Eng.
– reference: Sun, J., Feng, B. and Xu, W., 2004. Particle swarm optimization with particles having quantum behavior, Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753). IEEE. pp. 325–331.
– volume: 23
  start-page: 1
  year: 2004
  end-page: 9
  ident: bib69
  article-title: Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration
  publication-title: Irrig. Sci.
– volume: 162
  start-page: 98
  year: 2018
  end-page: 107
  ident: bib84
  article-title: A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights
  publication-title: Ocean Eng.
– start-page: 253
  year: 2005
  end-page: 257
  ident: bib10
  article-title: Water content and potential, measurement
  publication-title: Encycl. Soils Environ.
– volume: 12
  year: 2021
  ident: bib23
  article-title: A parameter optimizer based on genetic algorithm for the simulation of carbonate facies
  publication-title: Intell. Syst. Appl.
– volume: 259
  start-page: 241
  year: 2018
  end-page: 249
  ident: bib62
  article-title: Enhancing electronic nose performance based on a novel QPSO-RBM technique
  publication-title: Sens. Actuators B: Chem.
– volume: 122
  start-page: 215
  year: 2004
  end-page: 227
  ident: bib31
  article-title: Effect of soil moisture on canopy conductance of Amazonian rainforest
  publication-title: Agric. Meteorol.
– volume: 243
  year: 2021
  ident: bib12
  article-title: Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine
  publication-title: Agric. Water Manag.
– volume: 21
  start-page: 1349
  year: 2020
  end-page: 1365
  ident: bib94
  article-title: Uncertainties caused by resistances in evapotranspiration estimation using high-density eddy covariance measurements
  publication-title: J. Hydrometeorol.
– volume: 49
  start-page: 387
  year: 1998
  end-page: 398
  ident: bib40
  article-title: Stomatal control of photosynthesis and transpiration
  publication-title: J. Exp. Bot.
– volume: 587
  year: 2020
  ident: bib82
  article-title: Improving the Jarvis-type model with modified temperature and radiation functions for sap flow simulations
  publication-title: J. Hydrol.
– volume: 305
  start-page: 35
  year: 2008
  end-page: 47
  ident: bib85
  article-title: A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest
  publication-title: Plant Soil
– volume: 99
  year: 2021
  ident: bib61
  article-title: QPSO algorithm based on Lévy flight and its application in fuzzy portfolio
  publication-title: Appl. Soft Comput.
– volume: 63
  start-page: 277
  year: 1947
  end-page: 284
  ident: bib13
  article-title: A laboratory procdure for determining the field capacity of soils
  publication-title: Soil Sci.
– reference: FAOSTAT, Food and Agriculture Organization of the United Nations, 2019. Fao Statistical Databases. <
– volume: 4
  start-page: 138
  year: 2013
  ident: bib14
  article-title: Open or close the gate - stomata action under the control of phytohormones in drought stress conditions
  publication-title: Front. Plant Sci.
– volume: 3
  start-page: 513
  year: 1983
  end-page: 521
  ident: bib41
  article-title: Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne: rôle d'un coefficient cultural
  publication-title: Agronomie
– volume: 178
  start-page: 314
  year: 2016
  end-page: 324
  ident: bib54
  article-title: Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area
  publication-title: Agric. Water Manag.
– volume: 95
  year: 2021
  ident: bib93
  article-title: A new quantum particle swarm optimization algorithm for controller placement problem in software-defined networking
  publication-title: Comput. Electr. Eng.
– volume: 503
  start-page: 153
  year: 2013
  end-page: 168
  ident: bib53
  article-title: Measuring and modeling maize evapotranspiration under plastic film-mulching condition
  publication-title: J. Hydrol.
– volume: 21
  start-page: 297
  year: 1985
  end-page: 304
  ident: bib55
  article-title: Canopy conductance of coniferous forests related to climate
  publication-title: Water Resour. Res.
– volume: 202
  start-page: 156
  year: 2018
  end-page: 165
  ident: bib76
  article-title: Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches
  publication-title: Agric. Water Manag.
– volume: 268
  start-page: 189
  year: 2019
  end-page: 201
  ident: bib73
  article-title: Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence
  publication-title: Agric. Meteorol.
– volume: 34
  year: 2021
  ident: bib1
  article-title: Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 604
  year: 2022
  ident: bib17
  article-title: Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China
  publication-title: J. Hydrol.
– volume: 116
  year: 2021
  ident: bib7
  article-title: Fast linear least-squares method for ultrasound attenuation and backscatter estimation
  publication-title: Ultrasonics
– volume: 116
  start-page: 497
  year: 1990
  end-page: 519
  ident: bib74
  article-title: The theoretical relationship between foliage temperature and canopy resistance in sparse crops
  publication-title: Q J. R. Meteorol. Soc.
– volume: 390
  year: 2021
  ident: bib8
  article-title: Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm
  publication-title: Appl. Math. Comput.
– volume: 13
  year: 2022
  ident: bib27
  article-title: Estimating bulk stomatal conductance in grapevine canopies
  publication-title: Front. Plant Sci.
– volume: 3
  start-page: 309
  year: 1987
  end-page: 319
  ident: bib28
  article-title: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements
  publication-title: Tree Physiol.
– volume: 3
  start-page: 834
  year: 2016
  end-page: 853
  ident: bib92
  article-title: A review of remote sensing based actual evapotranspiration estimation
  publication-title: Wires Water
– volume: 54
  start-page: 155
  year: 1991
  end-page: 167
  ident: bib63
  article-title: Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains
  publication-title: Agric. Meteorol.
– volume: 63
  start-page: 1
  year: 1991
  end-page: 17
  ident: bib49
  article-title: Method of path coefficients: a trademark of Sewall Wright
  publication-title: Hum. Biol.
– volume: 15
  start-page: 475
  year: 2017
  end-page: 488
  ident: bib66
  article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model
  publication-title: Landslides
– volume: 30
  start-page: 689
  year: 2003
  end-page: 698
  ident: bib60
  article-title: Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines
  publication-title: Funct. Plant Biol.
– volume: 201
  start-page: 187
  year: 2015
  end-page: 195
  ident: bib30
  article-title: The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate
  publication-title: Agric. Meteorol.
– volume: 97
  start-page: 1355
  year: 2016
  end-page: 1362
  ident: bib45
  article-title: Visualizing vapor pressure: a mechanical demonstration of liquid–vapor phase equilibrium
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 149
  start-page: 1565
  year: 2009
  end-page: 1572
  ident: bib24
  article-title: Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest
  publication-title: Agric. Meteorol.
– volume: 81
  start-page: 1
  year: 2006
  end-page: 22
  ident: bib5
  article-title: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method
  publication-title: Agric. Water Manag.
– volume: 63
  start-page: 5354
  year: 2015
  end-page: 5363
  ident: bib90
  article-title: Emissions of 1,3-dichloropropene and chloropicrin after soil fumigation under field conditions
  publication-title: J. Agric. Food Chem.
– volume: 67
  start-page: 89
  year: 2011
  end-page: 97
  ident: bib88
  article-title: Application of the two-layer model for predicting transpiration from the rice canopy and water surface evaporation beneath the canopy
  publication-title: J. Agric. Meteorol.
– volume: 544
  start-page: 242
  year: 2017
  end-page: 253
  ident: bib29
  article-title: Soil-water content characterisation in a modified Jarvis-Stewart model: a case study of a conifer forest on a shallow unconfined aquifer
  publication-title: J. Hydrol.
– volume: 65
  start-page: 21
  year: 1993
  end-page: 45
  ident: bib16
  article-title: A multiple-source land surface energy balance model for use in general circulation models
  publication-title: Agric. Meteorol.
– volume: 109
  start-page: 1803
  year: 2020
  end-page: 1835
  ident: bib70
  article-title: Imbalanced regression and extreme value prediction
  publication-title: Mach. Learn.
– reference: Liu, C., 2012. Water transport mechanism and water consumption simulation of mature apple orchard in arid region. China Agricultural University. Beijing. 115 pp.
– volume: 66
  year: 2021
  ident: bib80
  article-title: Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression
  publication-title: Sustain. Cities Soc.
– reference: >(accessed 10 October 2021).
– volume: 44
  year: 2008
  ident: bib71
  article-title: Quantitative comparison of canopy conductance models using a Bayesian approach
  publication-title: Water Resour. Res
– volume: 104
  start-page: 193
  year: 2012
  end-page: 202
  ident: bib57
  article-title: Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China
  publication-title: Agric. Water Manag.
– volume: 119
  start-page: 1458
  year: 2014
  end-page: 1473
  ident: bib64
  article-title: Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis
  publication-title: J. Geophys. Res.: Biogeosci.
– volume: 266–267
  start-page: 109
  year: 2019
  end-page: 118
  ident: bib25
  article-title: Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models
  publication-title: Agric. Meteorol.
– volume: 208
  start-page: 1
  year: 2015
  end-page: 15
  ident: bib51
  article-title: Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions
  publication-title: Agric. Meteor.
– year: 1975
  ident: bib33
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 64
  start-page: 160
  year: 2022
  end-page: 175
  ident: bib9
  article-title: Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast
  publication-title: Oceanologia
– volume: 12
  year: 2020
  ident: bib89
  article-title: Parameterization and application of stanghellini model for estimating greenhouse cucumber transpiration
  publication-title: Water
– volume: 601
  year: 2021
  ident: bib3
  article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction
  publication-title: J. Hydrol.
– volume: 315
  year: 2022
  ident: bib21
  article-title: Phenology and canopy conductance limit the accuracy of 20 evapotranspiration models in predicting transpiration
  publication-title: Agric. Meteorol.
– volume: 148
  start-page: 1034
  year: 2008
  end-page: 1044
  ident: bib36
  article-title: On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density
  publication-title: Agric. Meteorol.
– volume: 96
  start-page: 25
  year: 1970
  end-page: 38
  ident: bib38
  article-title: Scheduling irrigations using climate-crop-soil data
  publication-title: J. Irrig. Drain. Div.
– volume: 234
  year: 2020
  ident: bib11
  article-title: Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?
  publication-title: Agric. Water Manag.
– volume: 271
  start-page: 375
  year: 2019
  end-page: 384
  ident: bib6
  article-title: Quantifying plant transpiration and canopy conductance using eddy flux data: an underlying water use efficiency method
  publication-title: Agric. Meteorol.
– reference: .
– volume: 50
  start-page: 6154
  year: 2014
  end-page: 6167
  ident: bib81
  article-title: Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia
  publication-title: Water Resour. Res.
– volume: 15
  start-page: 2821
  year: 2001
  end-page: 2832
  ident: bib15
  article-title: On the information content of forest transpiration measurements for identifying canopy conductance model parameters
  publication-title: Hydrol. Process.
– volume: 177
  start-page: 172
  year: 2016
  end-page: 180
  ident: bib22
  article-title: Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China
  publication-title: Agric. Water Manag.
– reference: Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agricultural Organization of the United Nations (FAO). Rome, Italy.
– volume: 31
  start-page: 873
  year: 2016
  end-page: 885
  ident: bib44
  article-title: Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow
  publication-title: Trees
– year: 2007
  ident: bib72
  article-title: Optimization Modelling: A Practical Approach
– volume: 244
  year: 2021
  ident: bib2
  article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation
  publication-title: Agric. Water Manag.
– reference: . 488968.
– volume: 489
  start-page: 124
  year: 2013
  end-page: 134
  ident: bib52
  article-title: Quantifying the combined effects of climatic, crop and soil factors on surface resistance in a maize field
  publication-title: J. Hydrol.
– volume: 37
  start-page: 689
  issue: 3
  year: 2001
  ident: 10.1016/j.agwat.2022.108061_bib48
  article-title: Stomatal control of transpiration: examination of the Jarvis-type representation of canopy resistance in relation to humidity
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900324
– volume: 49
  start-page: 387
  issue: 90001
  year: 1998
  ident: 10.1016/j.agwat.2022.108061_bib40
  article-title: Stomatal control of photosynthesis and transpiration
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/49.suppl_1.387
– volume: 259
  start-page: 241
  year: 2018
  ident: 10.1016/j.agwat.2022.108061_bib62
  article-title: Enhancing electronic nose performance based on a novel QPSO-RBM technique
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2017.12.026
– volume: 590
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib59
  article-title: Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125435
– volume: 544
  start-page: 242
  year: 2017
  ident: 10.1016/j.agwat.2022.108061_bib29
  article-title: Soil-water content characterisation in a modified Jarvis-Stewart model: a case study of a conifer forest on a shallow unconfined aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.041
– volume: 390
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib8
  article-title: Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm
  publication-title: Appl. Math. Comput.
– volume: 538
  start-page: 194
  year: 2016
  ident: 10.1016/j.agwat.2022.108061_bib39
  article-title: Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.002
– volume: 12
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib23
  article-title: A parameter optimizer based on genetic algorithm for the simulation of carbonate facies
  publication-title: Intell. Syst. Appl.
– volume: 96
  start-page: 25
  issue: 1
  year: 1970
  ident: 10.1016/j.agwat.2022.108061_bib38
  article-title: Scheduling irrigations using climate-crop-soil data
  publication-title: J. Irrig. Drain. Div.
  doi: 10.1061/JRCEA4.0000699
– volume: 95
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib93
  article-title: A new quantum particle swarm optimization algorithm for controller placement problem in software-defined networking
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107456
– volume: 91
  start-page: 350
  issue: 3
  year: 1992
  ident: 10.1016/j.agwat.2022.108061_bib43
  article-title: Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements
  publication-title: Oecologia
  doi: 10.1007/BF00317623
– volume: 503
  start-page: 153
  year: 2013
  ident: 10.1016/j.agwat.2022.108061_bib53
  article-title: Measuring and modeling maize evapotranspiration under plastic film-mulching condition
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.07.033
– volume: 66
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib80
  article-title: Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102690
– volume: 50
  start-page: 6154
  issue: 7
  year: 2014
  ident: 10.1016/j.agwat.2022.108061_bib81
  article-title: Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014818
– volume: 243
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib12
  article-title: Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106447
– ident: 10.1016/j.agwat.2022.108061_bib4
– ident: 10.1016/j.agwat.2022.108061_bib67
– volume: 15
  start-page: 2821
  issue: 14
  year: 2001
  ident: 10.1016/j.agwat.2022.108061_bib15
  article-title: On the information content of forest transpiration measurements for identifying canopy conductance model parameters
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.270
– volume: 13
  start-page: 251
  issue: 05
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib32
  article-title: Adaptive optimization swarm algorithm ensemble model applied to the classification of unbalanced data
  publication-title: Intell. Inf. Manag.
– volume: 23
  start-page: 449
  issue: 4
  year: 1998
  ident: 10.1016/j.agwat.2022.108061_bib68
  article-title: A canopy resistance estimation method to calculate transpiration
  publication-title: Phys. Chem. Earth
  doi: 10.1016/S0079-1946(98)00052-4
– volume: 63
  start-page: 277
  issue: 4
  year: 1947
  ident: 10.1016/j.agwat.2022.108061_bib13
  article-title: A laboratory procdure for determining the field capacity of soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194704000-00003
– volume: 202
  start-page: 156
  year: 2018
  ident: 10.1016/j.agwat.2022.108061_bib76
  article-title: Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.02.021
– volume: 122
  start-page: 215
  issue: 3–4
  year: 2004
  ident: 10.1016/j.agwat.2022.108061_bib31
  article-title: Effect of soil moisture on canopy conductance of Amazonian rainforest
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2003.09.006
– volume: 601
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib3
  article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126526
– volume: 208
  start-page: 1
  year: 2015
  ident: 10.1016/j.agwat.2022.108061_bib51
  article-title: Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions
  publication-title: Agric. Meteor.
  doi: 10.1016/j.agrformet.2015.04.002
– volume: 15
  start-page: 2449
  year: 2011
  ident: 10.1016/j.agwat.2022.108061_bib58
  article-title: MIMO radar array synthesis using QPSO with normal distributed contraction-expansion factor
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.08.460
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib89
  article-title: Parameterization and application of stanghellini model for estimating greenhouse cucumber transpiration
  publication-title: Water
  doi: 10.3390/w12020517
– volume: 99
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib61
  article-title: QPSO algorithm based on Lévy flight and its application in fuzzy portfolio
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106894
– volume: 3
  start-page: 834
  issue: 6
  year: 2016
  ident: 10.1016/j.agwat.2022.108061_bib92
  article-title: A review of remote sensing based actual evapotranspiration estimation
  publication-title: Wires Water
  doi: 10.1002/wat2.1168
– volume: 197
  start-page: 76
  year: 2014
  ident: 10.1016/j.agwat.2022.108061_bib26
  article-title: Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2014.05.012
– volume: 271
  start-page: 375
  year: 2019
  ident: 10.1016/j.agwat.2022.108061_bib6
  article-title: Quantifying plant transpiration and canopy conductance using eddy flux data: an underlying water use efficiency method
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2019.02.035
– volume: 176
  start-page: 851
  issue: 1
  year: 2018
  ident: 10.1016/j.agwat.2022.108061_bib65
  article-title: Stomatal VPD RESPONSE: THERE IS MORE TO THE STORY Than ABA
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00912
– volume: 63
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.agwat.2022.108061_bib49
  article-title: Method of path coefficients: a trademark of Sewall Wright
  publication-title: Hum. Biol.
– ident: 10.1016/j.agwat.2022.108061_bib79
  doi: 10.1109/CEC.2004.1330875
– volume: 177
  start-page: 172
  year: 2016
  ident: 10.1016/j.agwat.2022.108061_bib22
  article-title: Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.07.015
– volume: 4
  start-page: 138
  year: 2013
  ident: 10.1016/j.agwat.2022.108061_bib14
  article-title: Open or close the gate - stomata action under the control of phytohormones in drought stress conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00138
– volume: 44
  start-page: 844
  issue: 2s
  year: 2013
  ident: 10.1016/j.agwat.2022.108061_bib18
  article-title: Evapotranspiration models for a maize agro-ecosystem in irrigated and rainfed conditions
  publication-title: J. Agric. Eng.
  doi: 10.4081/jae.2013.411
– ident: 10.1016/j.agwat.2022.108061_bib42
  doi: 10.1109/ICNN.1995.488968
– volume: 268
  start-page: 189
  year: 2019
  ident: 10.1016/j.agwat.2022.108061_bib73
  article-title: Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2019.01.031
– volume: 201
  start-page: 187
  year: 2015
  ident: 10.1016/j.agwat.2022.108061_bib30
  article-title: The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2014.11.010
– volume: 489
  start-page: 124
  year: 2013
  ident: 10.1016/j.agwat.2022.108061_bib52
  article-title: Quantifying the combined effects of climatic, crop and soil factors on surface resistance in a maize field
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.03.002
– volume: 109
  start-page: 1803
  issue: 9–10
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib70
  article-title: Imbalanced regression and extreme value prediction
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-020-05900-9
– ident: 10.1016/j.agwat.2022.108061_bib19
– volume: 178
  start-page: 314
  year: 2016
  ident: 10.1016/j.agwat.2022.108061_bib54
  article-title: Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.09.016
– volume: 113
  start-page: 72
  year: 2015
  ident: 10.1016/j.agwat.2022.108061_bib87
  article-title: Calibrating RZWQM2 model using quantum-behaved particle swarm optimization algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.02.002
– volume: 305
  start-page: 35
  issue: 1–2
  year: 2008
  ident: 10.1016/j.agwat.2022.108061_bib85
  article-title: A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9399-x
– volume: 203
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib20
  article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2019.112236
– volume: 31
  start-page: 873
  issue: 3
  year: 2016
  ident: 10.1016/j.agwat.2022.108061_bib44
  article-title: Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow
  publication-title: Trees
  doi: 10.1007/s00468-016-1513-3
– volume: 116
  start-page: 497
  issue: 492
  year: 1990
  ident: 10.1016/j.agwat.2022.108061_bib74
  article-title: The theoretical relationship between foliage temperature and canopy resistance in sparse crops
  publication-title: Q J. R. Meteorol. Soc.
  doi: 10.1002/qj.49711649213
– volume: 34
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib1
  article-title: Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 46
  issue: 8
  year: 2010
  ident: 10.1016/j.agwat.2022.108061_bib35
  article-title: On the dynamics of canopy resistance: generalized linear estimation and relationships with primary micrometeorological variables
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008484
– volume: 67
  start-page: 89
  issue: 3
  year: 2011
  ident: 10.1016/j.agwat.2022.108061_bib88
  article-title: Application of the two-layer model for predicting transpiration from the rice canopy and water surface evaporation beneath the canopy
  publication-title: J. Agric. Meteorol.
  doi: 10.2480/agrmet.67.3.1
– volume: 244
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib2
  article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106622
– volume: 148
  start-page: 1034
  issue: 6–7
  year: 2008
  ident: 10.1016/j.agwat.2022.108061_bib36
  article-title: On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2008.02.001
– volume: 13
  year: 2022
  ident: 10.1016/j.agwat.2022.108061_bib27
  article-title: Estimating bulk stomatal conductance in grapevine canopies
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.839378
– year: 2007
  ident: 10.1016/j.agwat.2022.108061_bib72
– volume: 3
  start-page: 513
  issue: 6
  year: 1983
  ident: 10.1016/j.agwat.2022.108061_bib41
  article-title: Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne: rôle d'un coefficient cultural
  publication-title: Agronomie
  doi: 10.1051/agro:19830603
– volume: 81
  start-page: 1
  issue: 1–2
  year: 2006
  ident: 10.1016/j.agwat.2022.108061_bib5
  article-title: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2005.03.007
– volume: 162
  start-page: 98
  year: 2018
  ident: 10.1016/j.agwat.2022.108061_bib84
  article-title: A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.04.039
– volume: 159
  start-page: 1
  year: 2019
  ident: 10.1016/j.agwat.2022.108061_bib95
  article-title: Improved application of the Penman–Monteith model using an enhanced Jarvis model that considers the effects of nitrogen fertilization on canopy resistance
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.12.007
– volume: 54
  start-page: 155
  issue: 2–4
  year: 1991
  ident: 10.1016/j.agwat.2022.108061_bib63
  article-title: Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains
  publication-title: Agric. Meteorol.
  doi: 10.1016/0168-1923(91)90004-A
– volume: 119
  start-page: 1458
  issue: 7
  year: 2014
  ident: 10.1016/j.agwat.2022.108061_bib64
  article-title: Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis
  publication-title: J. Geophys. Res.: Biogeosci.
  doi: 10.1002/2014JG002623
– volume: 604
  year: 2022
  ident: 10.1016/j.agwat.2022.108061_bib17
  article-title: Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127207
– volume: 29
  start-page: 165
  issue: 3
  year: 2009
  ident: 10.1016/j.agwat.2022.108061_bib83
  article-title: Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20080061
– volume: 44
  issue: 9
  year: 2008
  ident: 10.1016/j.agwat.2022.108061_bib71
  article-title: Quantitative comparison of canopy conductance models using a Bayesian approach
  publication-title: Water Resour. Res
  doi: 10.1029/2007WR006761
– volume: 30
  start-page: 689
  issue: 6
  year: 2003
  ident: 10.1016/j.agwat.2022.108061_bib60
  article-title: Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP02181
– volume: 587
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib82
  article-title: Improving the Jarvis-type model with modified temperature and radiation functions for sap flow simulations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124981
– volume: 234
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib11
  article-title: Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106112
– volume: 104
  start-page: 193
  year: 2012
  ident: 10.1016/j.agwat.2022.108061_bib57
  article-title: Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2011.12.014
– volume: 16
  start-page: 210
  issue: 1
  year: 2017
  ident: 10.1016/j.agwat.2022.108061_bib91
  article-title: Towards a more flexible representation of water stress effects in the nonlinear Jarvis model
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(15)61307-7
– volume: 64
  start-page: 160
  issue: 1
  year: 2022
  ident: 10.1016/j.agwat.2022.108061_bib9
  article-title: Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast
  publication-title: Oceanologia
  doi: 10.1016/j.oceano.2021.10.004
– volume: 65
  start-page: 21
  issue: 1–2
  year: 1993
  ident: 10.1016/j.agwat.2022.108061_bib16
  article-title: A multiple-source land surface energy balance model for use in general circulation models
  publication-title: Agric. Meteorol.
  doi: 10.1016/0168-1923(93)90036-H
– volume: 266–267
  start-page: 109
  year: 2019
  ident: 10.1016/j.agwat.2022.108061_bib25
  article-title: Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2018.12.003
– volume: 116
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib7
  article-title: Fast linear least-squares method for ultrasound attenuation and backscatter estimation
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106503
– volume: 97
  start-page: 1355
  issue: 8
  year: 2016
  ident: 10.1016/j.agwat.2022.108061_bib45
  article-title: Visualizing vapor pressure: a mechanical demonstration of liquid–vapor phase equilibrium
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-15-00173.1
– volume: 234
  start-page: 212
  year: 2017
  ident: 10.1016/j.agwat.2022.108061_bib34
  article-title: Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2017.01.005
– volume: 29
  start-page: 1379
  issue: 5
  year: 1993
  ident: 10.1016/j.agwat.2022.108061_bib77
  article-title: Comparison of penman-monteith, shuttleworth-wallace, and modified priestley-taylor evapotranspiration models for wildland vegetation in semiarid rangeland
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR00333
– volume: 21
  start-page: 1349
  issue: 6
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib94
  article-title: Uncertainties caused by resistances in evapotranspiration estimation using high-density eddy covariance measurements
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-19-0191.1
– volume: 273
  start-page: 593
  issue: 927
  year: 1997
  ident: 10.1016/j.agwat.2022.108061_bib37
  article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– ident: 10.1016/j.agwat.2022.108061_bib56
– volume: 23
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.agwat.2022.108061_bib69
  article-title: Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-003-0087-1
– start-page: 253
  year: 2005
  ident: 10.1016/j.agwat.2022.108061_bib10
  article-title: Water content and potential, measurement
  publication-title: Encycl. Soils Environ.
  doi: 10.1016/B0-12-348530-4/00502-6
– start-page: 19
  year: 1988
  ident: 10.1016/j.agwat.2022.108061_bib78
  article-title: Modelling surface conductance of pine forest
  publication-title: Agric. Meteorol.
  doi: 10.1016/0168-1923(88)90003-2
– start-page: 28
  year: 2020
  ident: 10.1016/j.agwat.2022.108061_bib75
– volume: 187
  year: 2022
  ident: 10.1016/j.agwat.2022.108061_bib50
  article-title: A calibration method of DVL in integrated navigation system based on particle swarm optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110325
– volume: 149
  start-page: 1565
  issue: 10
  year: 2009
  ident: 10.1016/j.agwat.2022.108061_bib24
  article-title: Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2009.03.008
– year: 1975
  ident: 10.1016/j.agwat.2022.108061_bib33
– volume: 603
  year: 2021
  ident: 10.1016/j.agwat.2022.108061_bib86
  article-title: Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127028
– volume: 3
  start-page: 309
  issue: 4
  year: 1987
  ident: 10.1016/j.agwat.2022.108061_bib28
  article-title: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/3.4.309
– volume: 315
  year: 2022
  ident: 10.1016/j.agwat.2022.108061_bib21
  article-title: Phenology and canopy conductance limit the accuracy of 20 evapotranspiration models in predicting transpiration
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2022.108824
– volume: 21
  start-page: 297
  issue: 3
  year: 1985
  ident: 10.1016/j.agwat.2022.108061_bib55
  article-title: Canopy conductance of coniferous forests related to climate
  publication-title: Water Resour. Res.
  doi: 10.1029/WR021i003p00297
– volume: 15
  start-page: 475
  issue: 3
  year: 2017
  ident: 10.1016/j.agwat.2022.108061_bib66
  article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model
  publication-title: Landslides
  doi: 10.1007/s10346-017-0883-y
– volume: 3
  start-page: 29
  issue: 1
  year: 1980
  ident: 10.1016/j.agwat.2022.108061_bib46
  article-title: Stomatal response to humidity: implications for transpiration
  publication-title: Plant Cell Environ.
  doi: 10.1111/1365-3040.ep11580512
– volume: 63
  start-page: 5354
  issue: 22
  year: 2015
  ident: 10.1016/j.agwat.2022.108061_bib90
  article-title: Emissions of 1,3-dichloropropene and chloropicrin after soil fumigation under field conditions
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b01309
– volume: 44
  issue: 10
  year: 2008
  ident: 10.1016/j.agwat.2022.108061_bib47
  article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006562
SSID ssj0004047
Score 2.4572022
Snippet Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance...
Accurate estimates of plant transpiration (Tₛf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108061
SubjectTerms air temperature
algorithms
apples
canopy
Canopy resistance
China
Constraint function
decision making
developmental stages
Growth period segmentation
leaf area index
light intensity
meteorological data
orchards
soil water content
Swarm intelligence optimization algorithms
transpiration
trees
vapor pressure deficit
water management
water use efficiency
Title Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model
URI https://dx.doi.org/10.1016/j.agwat.2022.108061
https://www.proquest.com/docview/3153815958
Volume 276
WOSCitedRecordID wos000899245100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZg4QAHxFMsLxkJcYGg-FE3Pq7QrjiEsoeuVHGxEtstqbZpaRu64tczduxk2YXVcuBita7Th7-vk2_s8QxCb5hg8AKhiaESHBRubSKZFgkTLo7NEjLlxhebGI5G2WQij8NS9saXExjWdXZ2Jlf_FWroA7Dd0dl_gLt7U-iAxwA6tAA7tNcC3ulK6wLIXeMyl1cBZJdPA_QpKMxmEw9JHdt6UdTJZ5ejyq3I-sI4fQ6JEJq-BLuyqH7C03kBpiXUzzmvaw9m6z6Jx65wmRcXlwJrJqF-Sl7t-gNoX78VfrU2b7rtkKZqOVrPymXszKumjQ5o6p2tzq9VUBbDmzuTxlwwxrCtyxPtLx2Kdysf6yhI8ker3i4wzD8UM_gB4NNTGob3N7G4cT_6oo5O8lyNDyfjt6vviSsv5rbhQ62Vm-gWHQ6kjL53PECb-kp03deL6al8IOClT_2bhLlwM_cKZXwf3QuuBT5oKfEA3bD1Q3S3R8Y-QpUnB3bkwL-RA3fkwJ4cGMiBL5ADe9RxTw7syIE7cuCWHO2wx-jk6HD88VMSim0kGkTbNgE_gGSlNjrlYMYZLy2zwjChObFGUFoOiCFFyUymeWF55tJ1aSPSgk-5JNyyJ2ivXtb2KcIik2VpDZ8KaXmZFlJbYowG0z-VWVqSfUTj_CkdMtG7giinKoYczpWfdOUmXbWTvo_edxet2kQsVw8XERgVtGSrERWQ6uoLX0cYFVhat31W1HbZbBRz4gDU_yB7do0xz9Gd_h_wAu1t1419iW7rH9tqs37l6fcLGIekXA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+tree+transpiration+estimated+using+the+Penman-Monteith+model+integrated+with+optimized+jarvis+model&rft.jtitle=Agricultural+water+management&rft.au=Xing%2C+Liwen&rft.au=Zhao%2C+Lu&rft.au=Cui%2C+Ningbo&rft.au=Liu%2C+Chunwei&rft.date=2023-02-01&rft.issn=0378-3774&rft.volume=276+p.108061-&rft_id=info:doi/10.1016%2Fj.agwat.2022.108061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon