Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model
Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tsf modeling. However, the rc is difficult to measure but it can be accurately estimate...
Gespeichert in:
| Veröffentlicht in: | Agricultural water management Jg. 276; S. 108061 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2023
|
| Schlagworte: | |
| ISSN: | 0378-3774, 1873-2283 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tsf modeling. However, the rc is difficult to measure but it can be accurately estimated using the Jarvis canopy resistance model (JA). Our objectives were to evaluate the rc of apple trees calculated with an inverted PM model integrated with different versions of the JA model for different growth stages and to compare their accuracy using four optimization algorithms, the least squares method (LSM), genetic algorithm (GA), quantum particle swarm optimization (QPSO), and the mind evolutionary algorithm (MEA). We explored the effect of environmental constraint functions and parameter optimization of three environmental variables, vapor pressure deficit (VPD), net irradiance (Rn), and air temperature (Ta), and of soil water content (θa) on the accuracy of JA sub-models to calculate apple tree rc and Tsf. In our analysis, we used rainfed data from experiments on an apple orchard conducted during 2008–2010 at Wuwei City on the Loess Plateau of China. We compared 81 segmented JA sub-models (by canopy growth stage), comprising of the combination of the environmental constraint functions that were used to calculate rc. Moreover, the JA sub-models were optimized and results were compared to improve the accuracy of Tsf estimates with five empirical rc models, combined with the PM model. The results showed that sub-model JA3322, i.e., the third constraint for VPD, the third constraint for Rn, the second constraint for Ta, and the second constraint for θa attained the best estimate of rc with a coefficient of determination (R2 = 0.71), a Nash-Sutcliffe efficiency coefficient (NSE = 0.65), root mean squared error (RMSE = 1257.4 s m-1), and global performance indicator (GPI = 1.0) for the whole growth stage. The equivalent values for the partial canopy stage were 0.78, 0.72, 1203.3 s m-1 and 0.99, and the values for the dense canopy stage were 0.78, 0.77, 445.6 s m-1 and 0.97, respectively. Segmented JA models based on the leaf area index threshold significantly improved the accuracy of rc estimation, where the median R2 and NSE were improved by 7.1 % and 12.4 % in the partial canopy stage and by 12.2 % and 13.4 % in the dense canopy stage. Despite pointing out the best environmental constraint functions of the JA model in the different growth stages, results indicated that the MEA yielded the most accurate estimates of rc, followed by QPSO, GA, and LSM. Moreover, the JA model with environmental constraints was the most accurate method to estimate the apple tree Tsf, and MEA was the most suitable parameter optimization algorithm. Overall, the findings of this study provide accurate actual water consumption information of apple trees using easily accessible meteorological data for the effective day-to-day water management decision-making of rain-fed apple tree orchards on the Loess Plateau of China previously.
•Jarvis was superior to other empirical models for canopy resistance estimation.•Jarvis segmented by canopy growth stage gave a more accurate estimation.•Finding the most appropriate Jarvis model for apple tree canopy resistance.•Intelligence optimization algorithms improved the accuracy of the Jarvis models. |
|---|---|
| AbstractList | Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tsf modeling. However, the rc is difficult to measure but it can be accurately estimated using the Jarvis canopy resistance model (JA). Our objectives were to evaluate the rc of apple trees calculated with an inverted PM model integrated with different versions of the JA model for different growth stages and to compare their accuracy using four optimization algorithms, the least squares method (LSM), genetic algorithm (GA), quantum particle swarm optimization (QPSO), and the mind evolutionary algorithm (MEA). We explored the effect of environmental constraint functions and parameter optimization of three environmental variables, vapor pressure deficit (VPD), net irradiance (Rn), and air temperature (Ta), and of soil water content (θa) on the accuracy of JA sub-models to calculate apple tree rc and Tsf. In our analysis, we used rainfed data from experiments on an apple orchard conducted during 2008–2010 at Wuwei City on the Loess Plateau of China. We compared 81 segmented JA sub-models (by canopy growth stage), comprising of the combination of the environmental constraint functions that were used to calculate rc. Moreover, the JA sub-models were optimized and results were compared to improve the accuracy of Tsf estimates with five empirical rc models, combined with the PM model. The results showed that sub-model JA3322, i.e., the third constraint for VPD, the third constraint for Rn, the second constraint for Ta, and the second constraint for θa attained the best estimate of rc with a coefficient of determination (R2 = 0.71), a Nash-Sutcliffe efficiency coefficient (NSE = 0.65), root mean squared error (RMSE = 1257.4 s m-1), and global performance indicator (GPI = 1.0) for the whole growth stage. The equivalent values for the partial canopy stage were 0.78, 0.72, 1203.3 s m-1 and 0.99, and the values for the dense canopy stage were 0.78, 0.77, 445.6 s m-1 and 0.97, respectively. Segmented JA models based on the leaf area index threshold significantly improved the accuracy of rc estimation, where the median R2 and NSE were improved by 7.1 % and 12.4 % in the partial canopy stage and by 12.2 % and 13.4 % in the dense canopy stage. Despite pointing out the best environmental constraint functions of the JA model in the different growth stages, results indicated that the MEA yielded the most accurate estimates of rc, followed by QPSO, GA, and LSM. Moreover, the JA model with environmental constraints was the most accurate method to estimate the apple tree Tsf, and MEA was the most suitable parameter optimization algorithm. Overall, the findings of this study provide accurate actual water consumption information of apple trees using easily accessible meteorological data for the effective day-to-day water management decision-making of rain-fed apple tree orchards on the Loess Plateau of China previously.
•Jarvis was superior to other empirical models for canopy resistance estimation.•Jarvis segmented by canopy growth stage gave a more accurate estimation.•Finding the most appropriate Jarvis model for apple tree canopy resistance.•Intelligence optimization algorithms improved the accuracy of the Jarvis models. Accurate estimates of plant transpiration (Tₛf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance (rc), the Penman-Monteith (PM) model is commonly used in Tₛf modeling. However, the rc is difficult to measure but it can be accurately estimated using the Jarvis canopy resistance model (JA). Our objectives were to evaluate the rc of apple trees calculated with an inverted PM model integrated with different versions of the JA model for different growth stages and to compare their accuracy using four optimization algorithms, the least squares method (LSM), genetic algorithm (GA), quantum particle swarm optimization (QPSO), and the mind evolutionary algorithm (MEA). We explored the effect of environmental constraint functions and parameter optimization of three environmental variables, vapor pressure deficit (VPD), net irradiance (Rₙ), and air temperature (Tₐ), and of soil water content (θₐ) on the accuracy of JA sub-models to calculate apple tree rc and Tₛf. In our analysis, we used rainfed data from experiments on an apple orchard conducted during 2008–2010 at Wuwei City on the Loess Plateau of China. We compared 81 segmented JA sub-models (by canopy growth stage), comprising of the combination of the environmental constraint functions that were used to calculate rc. Moreover, the JA sub-models were optimized and results were compared to improve the accuracy of Tₛf estimates with five empirical rc models, combined with the PM model. The results showed that sub-model JA₃₃₂₂, i.e., the third constraint for VPD, the third constraint for Rₙ, the second constraint for Tₐ, and the second constraint for θₐ attained the best estimate of rc with a coefficient of determination (R² = 0.71), a Nash-Sutcliffe efficiency coefficient (NSE = 0.65), root mean squared error (RMSE = 1257.4 s m⁻¹), and global performance indicator (GPI = 1.0) for the whole growth stage. The equivalent values for the partial canopy stage were 0.78, 0.72, 1203.3 s m⁻¹ and 0.99, and the values for the dense canopy stage were 0.78, 0.77, 445.6 s m⁻¹ and 0.97, respectively. Segmented JA models based on the leaf area index threshold significantly improved the accuracy of rc estimation, where the median R² and NSE were improved by 7.1 % and 12.4 % in the partial canopy stage and by 12.2 % and 13.4 % in the dense canopy stage. Despite pointing out the best environmental constraint functions of the JA model in the different growth stages, results indicated that the MEA yielded the most accurate estimates of rc, followed by QPSO, GA, and LSM. Moreover, the JA model with environmental constraints was the most accurate method to estimate the apple tree Tₛf, and MEA was the most suitable parameter optimization algorithm. Overall, the findings of this study provide accurate actual water consumption information of apple trees using easily accessible meteorological data for the effective day-to-day water management decision-making of rain-fed apple tree orchards on the Loess Plateau of China previously. |
| ArticleNumber | 108061 |
| Author | Liu, Chunwei Guo, Li Zhao, Lu Cui, Ningbo Jiang, Shouzheng Du, Taisheng Wu, Zongjun Gong, Daozhi Xing, Liwen |
| Author_xml | – sequence: 1 givenname: Liwen surname: Xing fullname: Xing, Liwen organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China – sequence: 2 givenname: Lu surname: Zhao fullname: Zhao, Lu organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China – sequence: 3 givenname: Ningbo surname: Cui fullname: Cui, Ningbo email: cuiningbo@126.com organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China – sequence: 4 givenname: Chunwei surname: Liu fullname: Liu, Chunwei organization: Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, PR China – sequence: 5 givenname: Li surname: Guo fullname: Guo, Li organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China – sequence: 6 givenname: Taisheng surname: Du fullname: Du, Taisheng organization: Center for Agricultural Water Research in China, China Agricultural University, Beijing 100091, PR China – sequence: 7 givenname: Zongjun surname: Wu fullname: Wu, Zongjun organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China – sequence: 8 givenname: Daozhi surname: Gong fullname: Gong, Daozhi organization: State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Science, Beijing 100081, PR China – sequence: 9 givenname: Shouzheng surname: Jiang fullname: Jiang, Shouzheng organization: State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, PR China |
| BookMark | eNqFkD1PwzAQhi0EEm3hF7BkZEnxVxJ3YKgqvqQiGGC2XPvaukrtYLsg-PW4DRMDLGfd6X3OumeIjp13gNAFwWOCSX21GavVh0pjiinNE4FrcoQGRDSspFSwYzTArBElaxp-ioYxbjDGHPNmgOy061ooUoB9US52NqhkvSsgJrtVCUyxi9atirSG4hncVrny0bsENq2LrTfQFjZ3q3CIfuynvsuk_crtRoV3G_vYGTpZqjbC-c87Qq-3Ny-z-3L-dPcwm85LzQRJ5aRpiFhoozHntGJ8AQxqw2rNCZia0kVFDFELZoTmCrioKMba1FjxJZ8QDmyELvu9XfBvu3yF3NqooW2VA7-LkpEqf1RNKpGjrI_q4GMMsJRdyDeHT0mw3IuVG3kQK_diZS82U5NflLbp4CwLtO0_7HXPQjbwbiHIqC04DcYG0Ekab__kvwEv35kc |
| CitedBy_id | crossref_primary_10_1016_j_agwat_2024_109193 crossref_primary_10_3390_agronomy14071531 crossref_primary_10_1016_j_resconrec_2024_107528 crossref_primary_10_1002_cem_3515 crossref_primary_10_1002_cem_3537 crossref_primary_10_1016_j_agwat_2024_108745 crossref_primary_10_1016_j_resconrec_2025_108390 crossref_primary_10_1016_j_agwat_2023_108665 crossref_primary_10_1016_j_agwat_2024_109238 crossref_primary_10_1016_j_agwat_2024_108924 crossref_primary_10_1016_j_compag_2023_108253 crossref_primary_10_1016_j_jhydrol_2024_131375 crossref_primary_10_1016_j_plaphy_2023_107939 crossref_primary_10_1016_j_agrformet_2025_110736 crossref_primary_10_1016_j_agwat_2023_108620 crossref_primary_10_1016_j_compag_2023_108139 |
| Cites_doi | 10.1029/2000WR900324 10.1093/jexbot/49.suppl_1.387 10.1016/j.snb.2017.12.026 10.1016/j.jhydrol.2020.125435 10.1016/j.jhydrol.2016.11.041 10.1016/j.jhydrol.2016.04.002 10.1061/JRCEA4.0000699 10.1016/j.compeleceng.2021.107456 10.1007/BF00317623 10.1016/j.jhydrol.2013.07.033 10.1016/j.scs.2020.102690 10.1002/2013WR014818 10.1016/j.agwat.2020.106447 10.1002/hyp.270 10.1016/S0079-1946(98)00052-4 10.1097/00010694-194704000-00003 10.1016/j.agwat.2018.02.021 10.1016/j.agrformet.2003.09.006 10.1016/j.jhydrol.2021.126526 10.1016/j.agrformet.2015.04.002 10.1016/j.proeng.2011.08.460 10.3390/w12020517 10.1016/j.asoc.2020.106894 10.1002/wat2.1168 10.1016/j.agrformet.2014.05.012 10.1016/j.agrformet.2019.02.035 10.1104/pp.17.00912 10.1109/CEC.2004.1330875 10.1016/j.agwat.2016.07.015 10.3389/fpls.2013.00138 10.4081/jae.2013.411 10.1109/ICNN.1995.488968 10.1016/j.agrformet.2019.01.031 10.1016/j.agrformet.2014.11.010 10.1016/j.jhydrol.2013.03.002 10.1007/s10994-020-05900-9 10.1016/j.agwat.2016.09.016 10.1016/j.compag.2015.02.002 10.1007/s11104-007-9399-x 10.1016/j.enconman.2019.112236 10.1007/s00468-016-1513-3 10.1002/qj.49711649213 10.1029/2009WR008484 10.2480/agrmet.67.3.1 10.1016/j.agwat.2020.106622 10.1016/j.agrformet.2008.02.001 10.3389/fpls.2022.839378 10.1051/agro:19830603 10.1016/j.agwat.2005.03.007 10.1016/j.oceaneng.2018.04.039 10.1016/j.envexpbot.2018.12.007 10.1016/0168-1923(91)90004-A 10.1002/2014JG002623 10.1016/j.jhydrol.2021.127207 10.1042/BSR20080061 10.1029/2007WR006761 10.1071/FP02181 10.1016/j.jhydrol.2020.124981 10.1016/j.agwat.2020.106112 10.1016/j.agwat.2011.12.014 10.1016/S2095-3119(15)61307-7 10.1016/j.oceano.2021.10.004 10.1016/0168-1923(93)90036-H 10.1016/j.agrformet.2018.12.003 10.1016/j.ultras.2021.106503 10.1175/BAMS-D-15-00173.1 10.1016/j.agrformet.2017.01.005 10.1029/93WR00333 10.1175/JHM-D-19-0191.1 10.1007/s00271-003-0087-1 10.1016/B0-12-348530-4/00502-6 10.1016/0168-1923(88)90003-2 10.1016/j.measurement.2021.110325 10.1016/j.agrformet.2009.03.008 10.1016/j.jhydrol.2021.127028 10.1093/treephys/3.4.309 10.1016/j.agrformet.2022.108824 10.1029/WR021i003p00297 10.1007/s10346-017-0883-y 10.1111/1365-3040.ep11580512 10.1021/acs.jafc.5b01309 10.1029/2007WR006562 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.agwat.2022.108061 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1873-2283 |
| ExternalDocumentID | 10_1016_j_agwat_2022_108061 S0378377422006084 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SEW VH1 WUQ XPP ZMT ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c381t-97718bcdc0442534be3e6d36c41ed622b51d1ab3d8c4ae485200cd60a4f4914e3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899245100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-3774 |
| IngestDate | Fri Oct 03 00:14:48 EDT 2025 Tue Nov 18 20:27:43 EST 2025 Sat Nov 29 07:17:23 EST 2025 Fri Feb 23 02:39:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Canopy resistance Constraint function Swarm intelligence optimization algorithms Growth period segmentation |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c381t-97718bcdc0442534be3e6d36c41ed622b51d1ab3d8c4ae485200cd60a4f4914e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.agwat.2022.108061 |
| PQID | 3153815958 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153815958 crossref_primary_10_1016_j_agwat_2022_108061 crossref_citationtrail_10_1016_j_agwat_2022_108061 elsevier_sciencedirect_doi_10_1016_j_agwat_2022_108061 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Agricultural water management |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhou, Kang, Tong, Ding, Li, Du (bib95) 2019; 159 Li, Kang, Li, Jiang, Tong, Ding, Li, Du (bib54) 2016; 178 Wu, Cui, Hu, Gong, Wang, Feng, Jiang, Lv, Han, Xing (bib86) 2021; 603 Jarvis (bib37) 1997; 273 Jiang, Kang, Tong, Li (bib39) 2016; 538 Stannard (bib77) 1993; 29 Samanta, Clayton, Mackay, Kruger, Ewers (bib71) 2008; 44 Shan, Ju, Migliavacca, Martini, Guanter, Chen, Goulas, Zhang (bib73) 2019; 268 Feng, Gong, Jiang, Zhao, Cui (bib20) 2020; 203 Kučera, Brito, Jiménez, Urban (bib44) 2016; 31 Sun, J., Feng, B. and Xu, W., 2004. Particle swarm optimization with particles having quantum behavior, Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753). IEEE. pp. 325–331. Liu, C., 2012. Water transport mechanism and water consumption simulation of mature apple orchard in arid region. China Agricultural University. Beijing. 115 pp. Liu, Du, Li, Kang, Li, Tong (bib57) 2012; 104 (accessed 13 March 2021). . Holland (bib33) 1975 Whitley, Zeppel, Armstrong, Macinnis-Ng, Yunusa, Eamus (bib85) 2008; 305 Smith (bib75) 2020 Zhang, Li, Liu, Ouyang, Fang, Mu, Gao (bib93) 2021; 95 Wang, Guan, Liu, Soulsby, Tetzlaff, Zhang (bib82) 2020; 587 Facchi, Gharsallah, Gandolfi (bib18) 2013; 44 Yan, Oue (bib88) 2011; 67 (accessed 10 October 2021). Massman, Kaufmann (bib63) 1991; 54 NBSPRC, National Bureau of statistics of the People's Republic of China, 2021. Database of the National Bureau of Statistics of China. Katerji, Perrier, Renard, Oulid Aissa (bib41) 1983; 3 Liu, Yang, Song (bib58) 2011; 15 Li, Zhang, Kang, Tong, Du, Hao, Zhao (bib51) 2015; 208 Miao, Wu, Xie, Li (bib66) 2017; 15 Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agricultural Organization of the United Nations (FAO). Rome, Italy. Bai, Li, Zhou, Yang, Yu, Wang, Liu, Wang (bib6) 2019; 271 Harris, Huntingford, Cox, Gash, Malhi (bib31) 2004; 122 Irmak, Mutiibwa, Irmak, Arkebauer, Weiss, Martin, Eisenhauer (bib36) 2008; 148 Leuning, Zhang, Rajaud, Cleugh, Tu (bib47) 2008; 44 Matheny, Bohrer, Stoy, Baker, Black, Desai, Dietze (bib64) 2014; 119 Li, Kang, Zhang, Li, Hao, Ortega-Farias, Guo, Ji, Wang, Jiang (bib52) 2013; 489 Bugajny, Furmańczyk (bib9) 2022; 64 Garcia-Santos, Bruijnzeel, Dolman (bib24) 2009; 149 Lindroth (bib55) 1985; 21 Wang, Guan, Deng, Simmons (bib81) 2014; 50 Wang, Tang, Li, Liu, Luo (bib84) 2018; 162 Lamb, Shaw (bib45) 2016; 97 Abd-Elmaboud, Abdel-Gawad, El-Alfy, Ezzeldin (bib1) 2021; 34 Hoshika, Fares, Savi, Gruening, Goded, De Marco, Sicard, Paoletti (bib34) 2017; 234 Dong, Zhu, Jia, Shao, Han, Qiao, Bai, Tang (bib17) 2022; 604 Alizadeh, Ghaderi Bafti, Kamangir, Zhang, Wright, Franz (bib3) 2021; 601 Chen, Hsu, Duan, Wang, Wei, Muhammad (bib11) 2020; 234 Stewart (bib78) 1988 Ghimire, Lubczynski, Bruijnzeel, Chavarro-Rincón (bib26) 2014; 197 Granier (bib28) 1987; 3 Lu, He (bib61) 2021; 99 Zhang, Kimball, Running (bib92) 2016; 3 Srivastava, Panda, Chakraborty, Halder (bib76) 2018; 202 Dekker, Bouten, Bosveld (bib15) 2001; 15 Garcia, Lôndero (bib23) 2021; 12 488968. He, Qin (bib32) 2021; 13 Li (bib49) 1991; 63 Li, Xu, Zhu, He (bib50) 2022; 187 Landsberg, Butler (bib46) 1980; 3 Yates, Ashworth, Zheng, Zhang, Knuteson, van Wessenbeeck (bib90) 2015; 63 Daszkowska-Golec, Szarejko (bib14) 2013; 4 Campbell, Campbell (bib10) 2005 Kostner, Schulze, Kelliher, Hollinger (bib43) 1992; 91 Lu, Yunusa, Walker, Muller (bib60) 2003; 30 Jones (bib40) 1998; 49 Chia, Huang, Koo (bib12) 2021; 243 Liu, Xu, Wang, Lv, Li (bib59) 2020; 590 Ribeiro, Moniz (bib70) 2020; 109 Novák (bib68) 1998; 23 Bohaienko, Gladky, Romashchenko, Matiash (bib8) 2021; 390 Tang, Yin, Yang, Yu, Guo (bib80) 2021; 66 FAOSTAT, Food and Agriculture Organization of the United Nations, 2019. Fao Statistical Databases. Lhomme (bib48) 2001; 37 Ahmadi, Mehdizadeh, Mohammadi, Pham, Doan, Vo (bib2) 2021; 244 Colman (bib13) 1947; 63 Gassmann, Tonti, Burek, Pérez (bib25) 2019; 266–267 Fu, Sun, Luo (bib22) 2016; 177 Guyot, Fan, Oestergaard, Whitley, Gibbes, Arsac, Lockington (bib29) 2017; 544 Hardwick, Toumi, Pfeifer, Turner, Nilus, Ewers (bib30) 2015; 201 Li, Kang, Zhang, Ortega-Farias, Li, Du, Tong, Wang, Ingman, Guo (bib53) 2013; 503 Zhao, Qiu, Xiong, Paw U, Gentine, Chen (bib94) 2020; 21 Jensen, Robb, Franzoy (bib38) 1970; 96 Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks. IEEE. pp. 1942–1948. Allen, Pruitt, Wright, Howell (bib5) 2006; 81 Birdi, Muraleedharan, D'Hooge, Bertrand (bib7) 2021; 116 Irmak, Mutiibwa (bib35) 2010; 46 Forster, Kim, Kunz, Abuseif, Chulliparambil, Srichandra, Michael (bib21) 2022; 315 Wang, Hu, Li, Chen (bib83) 2009; 29 Xi, Qi, Zou, Raghavan, Sun (bib87) 2015; 113 Merilo, Yarmolinsky, Jalakas, Parik, Tulva, Rasulov, Kilk, Kollist (bib65) 2018; 176 Sarker, Newton (bib72) 2007 Yan, Huang, Zhang, Gerrits, Wang, Zhang, Zhao (bib89) 2020; 12 Dolman (bib16) 1993; 65 Shuttleworth, Gurney (bib74) 1990; 116 Luo, Jia, Qiao, Duan (bib62) 2018; 259 Ortega-Farias, Olioso, Antonioletti, Brisson (bib69) 2004; 23 Gowdy, Pieri, Suter, Marguerit, Destrac-Irvine, Gambetta, van Leeuwen (bib27) 2022; 13 Yu, Cai, Zheng, Li, Wang (bib91) 2017; 16 10.1016/j.agwat.2022.108061_bib67 Liu (10.1016/j.agwat.2022.108061_bib57) 2012; 104 Li (10.1016/j.agwat.2022.108061_bib50) 2022; 187 Allen (10.1016/j.agwat.2022.108061_bib5) 2006; 81 Smith (10.1016/j.agwat.2022.108061_bib75) 2020 Kučera (10.1016/j.agwat.2022.108061_bib44) 2016; 31 Ribeiro (10.1016/j.agwat.2022.108061_bib70) 2020; 109 Landsberg (10.1016/j.agwat.2022.108061_bib46) 1980; 3 Srivastava (10.1016/j.agwat.2022.108061_bib76) 2018; 202 Wang (10.1016/j.agwat.2022.108061_bib83) 2009; 29 Jiang (10.1016/j.agwat.2022.108061_bib39) 2016; 538 Bai (10.1016/j.agwat.2022.108061_bib6) 2019; 271 Facchi (10.1016/j.agwat.2022.108061_bib18) 2013; 44 Yates (10.1016/j.agwat.2022.108061_bib90) 2015; 63 Merilo (10.1016/j.agwat.2022.108061_bib65) 2018; 176 Ahmadi (10.1016/j.agwat.2022.108061_bib2) 2021; 244 Li (10.1016/j.agwat.2022.108061_bib54) 2016; 178 Bugajny (10.1016/j.agwat.2022.108061_bib9) 2022; 64 Li (10.1016/j.agwat.2022.108061_bib51) 2015; 208 10.1016/j.agwat.2022.108061_bib56 Leuning (10.1016/j.agwat.2022.108061_bib47) 2008; 44 Stewart (10.1016/j.agwat.2022.108061_bib78) 1988 Abd-Elmaboud (10.1016/j.agwat.2022.108061_bib1) 2021; 34 10.1016/j.agwat.2022.108061_bib19 Irmak (10.1016/j.agwat.2022.108061_bib35) 2010; 46 Lu (10.1016/j.agwat.2022.108061_bib60) 2003; 30 Wang (10.1016/j.agwat.2022.108061_bib84) 2018; 162 Sarker (10.1016/j.agwat.2022.108061_bib72) 2007 Jones (10.1016/j.agwat.2022.108061_bib40) 1998; 49 Chia (10.1016/j.agwat.2022.108061_bib12) 2021; 243 Harris (10.1016/j.agwat.2022.108061_bib31) 2004; 122 Garcia-Santos (10.1016/j.agwat.2022.108061_bib24) 2009; 149 Granier (10.1016/j.agwat.2022.108061_bib28) 1987; 3 Li (10.1016/j.agwat.2022.108061_bib49) 1991; 63 Garcia (10.1016/j.agwat.2022.108061_bib23) 2021; 12 Dong (10.1016/j.agwat.2022.108061_bib17) 2022; 604 Katerji (10.1016/j.agwat.2022.108061_bib41) 1983; 3 Lu (10.1016/j.agwat.2022.108061_bib61) 2021; 99 Wang (10.1016/j.agwat.2022.108061_bib81) 2014; 50 Novák (10.1016/j.agwat.2022.108061_bib68) 1998; 23 Lindroth (10.1016/j.agwat.2022.108061_bib55) 1985; 21 Tang (10.1016/j.agwat.2022.108061_bib80) 2021; 66 Yan (10.1016/j.agwat.2022.108061_bib89) 2020; 12 Feng (10.1016/j.agwat.2022.108061_bib20) 2020; 203 Liu (10.1016/j.agwat.2022.108061_bib59) 2020; 590 Whitley (10.1016/j.agwat.2022.108061_bib85) 2008; 305 Hoshika (10.1016/j.agwat.2022.108061_bib34) 2017; 234 Matheny (10.1016/j.agwat.2022.108061_bib64) 2014; 119 Shuttleworth (10.1016/j.agwat.2022.108061_bib74) 1990; 116 10.1016/j.agwat.2022.108061_bib42 Guyot (10.1016/j.agwat.2022.108061_bib29) 2017; 544 Alizadeh (10.1016/j.agwat.2022.108061_bib3) 2021; 601 Birdi (10.1016/j.agwat.2022.108061_bib7) 2021; 116 Ghimire (10.1016/j.agwat.2022.108061_bib26) 2014; 197 Lhomme (10.1016/j.agwat.2022.108061_bib48) 2001; 37 Wang (10.1016/j.agwat.2022.108061_bib82) 2020; 587 Lamb (10.1016/j.agwat.2022.108061_bib45) 2016; 97 Daszkowska-Golec (10.1016/j.agwat.2022.108061_bib14) 2013; 4 He (10.1016/j.agwat.2022.108061_bib32) 2021; 13 Li (10.1016/j.agwat.2022.108061_bib52) 2013; 489 Massman (10.1016/j.agwat.2022.108061_bib63) 1991; 54 10.1016/j.agwat.2022.108061_bib4 Samanta (10.1016/j.agwat.2022.108061_bib71) 2008; 44 Campbell (10.1016/j.agwat.2022.108061_bib10) 2005 Forster (10.1016/j.agwat.2022.108061_bib21) 2022; 315 Miao (10.1016/j.agwat.2022.108061_bib66) 2017; 15 Colman (10.1016/j.agwat.2022.108061_bib13) 1947; 63 Holland (10.1016/j.agwat.2022.108061_bib33) 1975 Shan (10.1016/j.agwat.2022.108061_bib73) 2019; 268 Stannard (10.1016/j.agwat.2022.108061_bib77) 1993; 29 Luo (10.1016/j.agwat.2022.108061_bib62) 2018; 259 Bohaienko (10.1016/j.agwat.2022.108061_bib8) 2021; 390 Dekker (10.1016/j.agwat.2022.108061_bib15) 2001; 15 10.1016/j.agwat.2022.108061_bib79 Zhang (10.1016/j.agwat.2022.108061_bib93) 2021; 95 Chen (10.1016/j.agwat.2022.108061_bib11) 2020; 234 Hardwick (10.1016/j.agwat.2022.108061_bib30) 2015; 201 Jensen (10.1016/j.agwat.2022.108061_bib38) 1970; 96 Gowdy (10.1016/j.agwat.2022.108061_bib27) 2022; 13 Li (10.1016/j.agwat.2022.108061_bib53) 2013; 503 Wu (10.1016/j.agwat.2022.108061_bib86) 2021; 603 Zhao (10.1016/j.agwat.2022.108061_bib94) 2020; 21 Irmak (10.1016/j.agwat.2022.108061_bib36) 2008; 148 Zhang (10.1016/j.agwat.2022.108061_bib92) 2016; 3 Yan (10.1016/j.agwat.2022.108061_bib88) 2011; 67 Zhou (10.1016/j.agwat.2022.108061_bib95) 2019; 159 Kostner (10.1016/j.agwat.2022.108061_bib43) 1992; 91 Ortega-Farias (10.1016/j.agwat.2022.108061_bib69) 2004; 23 Fu (10.1016/j.agwat.2022.108061_bib22) 2016; 177 Yu (10.1016/j.agwat.2022.108061_bib91) 2017; 16 Xi (10.1016/j.agwat.2022.108061_bib87) 2015; 113 Jarvis (10.1016/j.agwat.2022.108061_bib37) 1997; 273 Liu (10.1016/j.agwat.2022.108061_bib58) 2011; 15 Gassmann (10.1016/j.agwat.2022.108061_bib25) 2019; 266–267 Dolman (10.1016/j.agwat.2022.108061_bib16) 1993; 65 |
| References_xml | – volume: 234 start-page: 212 year: 2017 end-page: 221 ident: bib34 article-title: Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests publication-title: Agric. Meteorol. – reference: Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks. IEEE. pp. 1942–1948. – volume: 37 start-page: 689 year: 2001 end-page: 699 ident: bib48 article-title: Stomatal control of transpiration: examination of the Jarvis-type representation of canopy resistance in relation to humidity publication-title: Water Resour. Res. – volume: 176 start-page: 851 year: 2018 end-page: 864 ident: bib65 article-title: Stomatal VPD RESPONSE: THERE IS MORE TO THE STORY Than ABA publication-title: Plant Physiol. – volume: 603 year: 2021 ident: bib86 article-title: Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China publication-title: J. Hydrol. – start-page: 19 year: 1988 end-page: 35 ident: bib78 article-title: Modelling surface conductance of pine forest publication-title: Agric. Meteorol. – volume: 538 start-page: 194 year: 2016 end-page: 207 ident: bib39 article-title: Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China publication-title: J. Hydrol. – volume: 3 start-page: 29 year: 1980 end-page: 33 ident: bib46 article-title: Stomatal response to humidity: implications for transpiration publication-title: Plant Cell Environ. – volume: 15 start-page: 2449 year: 2011 end-page: 2453 ident: bib58 article-title: MIMO radar array synthesis using QPSO with normal distributed contraction-expansion factor publication-title: Procedia Eng. – volume: 16 start-page: 210 year: 2017 end-page: 220 ident: bib91 article-title: Towards a more flexible representation of water stress effects in the nonlinear Jarvis model publication-title: J. Integr. Agric. – volume: 159 start-page: 1 year: 2019 end-page: 12 ident: bib95 article-title: Improved application of the Penman–Monteith model using an enhanced Jarvis model that considers the effects of nitrogen fertilization on canopy resistance publication-title: Environ. Exp. Bot. – volume: 29 start-page: 1379 year: 1993 end-page: 1392 ident: bib77 article-title: Comparison of penman-monteith, shuttleworth-wallace, and modified priestley-taylor evapotranspiration models for wildland vegetation in semiarid rangeland publication-title: Water Resour. Res. – volume: 23 start-page: 449 year: 1998 end-page: 452 ident: bib68 article-title: A canopy resistance estimation method to calculate transpiration publication-title: Phys. Chem. Earth – start-page: 28 year: 2020 ident: bib75 article-title: Divergent Water Use Strategies of Temperate Tree Species Estimated from Continuous Sap Flow Measurements – volume: 113 start-page: 72 year: 2015 end-page: 80 ident: bib87 article-title: Calibrating RZWQM2 model using quantum-behaved particle swarm optimization algorithm publication-title: Comput. Electron. Agric. – volume: 590 year: 2020 ident: bib59 article-title: Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based publication-title: J. Hydrol. – volume: 273 start-page: 593 year: 1997 end-page: 610 ident: bib37 article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 46 year: 2010 ident: bib35 article-title: On the dynamics of canopy resistance: generalized linear estimation and relationships with primary micrometeorological variables publication-title: Water Resour. Res. – volume: 44 year: 2008 ident: bib47 article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation publication-title: Water Resour. Res. – volume: 187 year: 2022 ident: bib50 article-title: A calibration method of DVL in integrated navigation system based on particle swarm optimization publication-title: Measurement – volume: 29 start-page: 165 year: 2009 end-page: 172 ident: bib83 article-title: Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides publication-title: Biosci. Rep. – volume: 203 year: 2020 ident: bib20 article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China publication-title: Energ. Convers. Manag. – volume: 13 start-page: 251 year: 2021 end-page: 267 ident: bib32 article-title: Adaptive optimization swarm algorithm ensemble model applied to the classification of unbalanced data publication-title: Intell. Inf. Manag. – reference: >(accessed 13 March 2021). – volume: 91 start-page: 350 year: 1992 end-page: 359 ident: bib43 article-title: Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements publication-title: Oecologia – volume: 197 start-page: 76 year: 2014 end-page: 90 ident: bib26 article-title: Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal publication-title: Agric. Meteorol. – reference: NBSPRC, National Bureau of statistics of the People's Republic of China, 2021. Database of the National Bureau of Statistics of China. < – volume: 44 start-page: 844 year: 2013 end-page: 850 ident: bib18 article-title: Evapotranspiration models for a maize agro-ecosystem in irrigated and rainfed conditions publication-title: J. Agric. Eng. – reference: Sun, J., Feng, B. and Xu, W., 2004. Particle swarm optimization with particles having quantum behavior, Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753). IEEE. pp. 325–331. – volume: 23 start-page: 1 year: 2004 end-page: 9 ident: bib69 article-title: Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration publication-title: Irrig. Sci. – volume: 162 start-page: 98 year: 2018 end-page: 107 ident: bib84 article-title: A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights publication-title: Ocean Eng. – start-page: 253 year: 2005 end-page: 257 ident: bib10 article-title: Water content and potential, measurement publication-title: Encycl. Soils Environ. – volume: 12 year: 2021 ident: bib23 article-title: A parameter optimizer based on genetic algorithm for the simulation of carbonate facies publication-title: Intell. Syst. Appl. – volume: 259 start-page: 241 year: 2018 end-page: 249 ident: bib62 article-title: Enhancing electronic nose performance based on a novel QPSO-RBM technique publication-title: Sens. Actuators B: Chem. – volume: 122 start-page: 215 year: 2004 end-page: 227 ident: bib31 article-title: Effect of soil moisture on canopy conductance of Amazonian rainforest publication-title: Agric. Meteorol. – volume: 243 year: 2021 ident: bib12 article-title: Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine publication-title: Agric. Water Manag. – volume: 21 start-page: 1349 year: 2020 end-page: 1365 ident: bib94 article-title: Uncertainties caused by resistances in evapotranspiration estimation using high-density eddy covariance measurements publication-title: J. Hydrometeorol. – volume: 49 start-page: 387 year: 1998 end-page: 398 ident: bib40 article-title: Stomatal control of photosynthesis and transpiration publication-title: J. Exp. Bot. – volume: 587 year: 2020 ident: bib82 article-title: Improving the Jarvis-type model with modified temperature and radiation functions for sap flow simulations publication-title: J. Hydrol. – volume: 305 start-page: 35 year: 2008 end-page: 47 ident: bib85 article-title: A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest publication-title: Plant Soil – volume: 99 year: 2021 ident: bib61 article-title: QPSO algorithm based on Lévy flight and its application in fuzzy portfolio publication-title: Appl. Soft Comput. – volume: 63 start-page: 277 year: 1947 end-page: 284 ident: bib13 article-title: A laboratory procdure for determining the field capacity of soils publication-title: Soil Sci. – reference: FAOSTAT, Food and Agriculture Organization of the United Nations, 2019. Fao Statistical Databases. < – volume: 4 start-page: 138 year: 2013 ident: bib14 article-title: Open or close the gate - stomata action under the control of phytohormones in drought stress conditions publication-title: Front. Plant Sci. – volume: 3 start-page: 513 year: 1983 end-page: 521 ident: bib41 article-title: Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne: rôle d'un coefficient cultural publication-title: Agronomie – volume: 178 start-page: 314 year: 2016 end-page: 324 ident: bib54 article-title: Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area publication-title: Agric. Water Manag. – volume: 95 year: 2021 ident: bib93 article-title: A new quantum particle swarm optimization algorithm for controller placement problem in software-defined networking publication-title: Comput. Electr. Eng. – volume: 503 start-page: 153 year: 2013 end-page: 168 ident: bib53 article-title: Measuring and modeling maize evapotranspiration under plastic film-mulching condition publication-title: J. Hydrol. – volume: 21 start-page: 297 year: 1985 end-page: 304 ident: bib55 article-title: Canopy conductance of coniferous forests related to climate publication-title: Water Resour. Res. – volume: 202 start-page: 156 year: 2018 end-page: 165 ident: bib76 article-title: Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches publication-title: Agric. Water Manag. – volume: 268 start-page: 189 year: 2019 end-page: 201 ident: bib73 article-title: Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence publication-title: Agric. Meteorol. – volume: 34 year: 2021 ident: bib1 article-title: Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt publication-title: J. Hydrol.: Reg. Stud. – volume: 604 year: 2022 ident: bib17 article-title: Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China publication-title: J. Hydrol. – volume: 116 year: 2021 ident: bib7 article-title: Fast linear least-squares method for ultrasound attenuation and backscatter estimation publication-title: Ultrasonics – volume: 116 start-page: 497 year: 1990 end-page: 519 ident: bib74 article-title: The theoretical relationship between foliage temperature and canopy resistance in sparse crops publication-title: Q J. R. Meteorol. Soc. – volume: 390 year: 2021 ident: bib8 article-title: Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm publication-title: Appl. Math. Comput. – volume: 13 year: 2022 ident: bib27 article-title: Estimating bulk stomatal conductance in grapevine canopies publication-title: Front. Plant Sci. – volume: 3 start-page: 309 year: 1987 end-page: 319 ident: bib28 article-title: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements publication-title: Tree Physiol. – volume: 3 start-page: 834 year: 2016 end-page: 853 ident: bib92 article-title: A review of remote sensing based actual evapotranspiration estimation publication-title: Wires Water – volume: 54 start-page: 155 year: 1991 end-page: 167 ident: bib63 article-title: Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains publication-title: Agric. Meteorol. – volume: 63 start-page: 1 year: 1991 end-page: 17 ident: bib49 article-title: Method of path coefficients: a trademark of Sewall Wright publication-title: Hum. Biol. – volume: 15 start-page: 475 year: 2017 end-page: 488 ident: bib66 article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model publication-title: Landslides – volume: 30 start-page: 689 year: 2003 end-page: 698 ident: bib60 article-title: Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines publication-title: Funct. Plant Biol. – volume: 201 start-page: 187 year: 2015 end-page: 195 ident: bib30 article-title: The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate publication-title: Agric. Meteorol. – volume: 97 start-page: 1355 year: 2016 end-page: 1362 ident: bib45 article-title: Visualizing vapor pressure: a mechanical demonstration of liquid–vapor phase equilibrium publication-title: Bull. Am. Meteorol. Soc. – volume: 149 start-page: 1565 year: 2009 end-page: 1572 ident: bib24 article-title: Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest publication-title: Agric. Meteorol. – volume: 81 start-page: 1 year: 2006 end-page: 22 ident: bib5 article-title: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method publication-title: Agric. Water Manag. – volume: 63 start-page: 5354 year: 2015 end-page: 5363 ident: bib90 article-title: Emissions of 1,3-dichloropropene and chloropicrin after soil fumigation under field conditions publication-title: J. Agric. Food Chem. – volume: 67 start-page: 89 year: 2011 end-page: 97 ident: bib88 article-title: Application of the two-layer model for predicting transpiration from the rice canopy and water surface evaporation beneath the canopy publication-title: J. Agric. Meteorol. – volume: 544 start-page: 242 year: 2017 end-page: 253 ident: bib29 article-title: Soil-water content characterisation in a modified Jarvis-Stewart model: a case study of a conifer forest on a shallow unconfined aquifer publication-title: J. Hydrol. – volume: 65 start-page: 21 year: 1993 end-page: 45 ident: bib16 article-title: A multiple-source land surface energy balance model for use in general circulation models publication-title: Agric. Meteorol. – volume: 109 start-page: 1803 year: 2020 end-page: 1835 ident: bib70 article-title: Imbalanced regression and extreme value prediction publication-title: Mach. Learn. – reference: Liu, C., 2012. Water transport mechanism and water consumption simulation of mature apple orchard in arid region. China Agricultural University. Beijing. 115 pp. – volume: 66 year: 2021 ident: bib80 article-title: Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression publication-title: Sustain. Cities Soc. – reference: >(accessed 10 October 2021). – volume: 44 year: 2008 ident: bib71 article-title: Quantitative comparison of canopy conductance models using a Bayesian approach publication-title: Water Resour. Res – volume: 104 start-page: 193 year: 2012 end-page: 202 ident: bib57 article-title: Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China publication-title: Agric. Water Manag. – volume: 119 start-page: 1458 year: 2014 end-page: 1473 ident: bib64 article-title: Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis publication-title: J. Geophys. Res.: Biogeosci. – volume: 266–267 start-page: 109 year: 2019 end-page: 118 ident: bib25 article-title: Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models publication-title: Agric. Meteorol. – volume: 208 start-page: 1 year: 2015 end-page: 15 ident: bib51 article-title: Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions publication-title: Agric. Meteor. – year: 1975 ident: bib33 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 64 start-page: 160 year: 2022 end-page: 175 ident: bib9 article-title: Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast publication-title: Oceanologia – volume: 12 year: 2020 ident: bib89 article-title: Parameterization and application of stanghellini model for estimating greenhouse cucumber transpiration publication-title: Water – volume: 601 year: 2021 ident: bib3 article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction publication-title: J. Hydrol. – volume: 315 year: 2022 ident: bib21 article-title: Phenology and canopy conductance limit the accuracy of 20 evapotranspiration models in predicting transpiration publication-title: Agric. Meteorol. – volume: 148 start-page: 1034 year: 2008 end-page: 1044 ident: bib36 article-title: On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density publication-title: Agric. Meteorol. – volume: 96 start-page: 25 year: 1970 end-page: 38 ident: bib38 article-title: Scheduling irrigations using climate-crop-soil data publication-title: J. Irrig. Drain. Div. – volume: 234 year: 2020 ident: bib11 article-title: Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling? publication-title: Agric. Water Manag. – volume: 271 start-page: 375 year: 2019 end-page: 384 ident: bib6 article-title: Quantifying plant transpiration and canopy conductance using eddy flux data: an underlying water use efficiency method publication-title: Agric. Meteorol. – reference: . – volume: 50 start-page: 6154 year: 2014 end-page: 6167 ident: bib81 article-title: Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia publication-title: Water Resour. Res. – volume: 15 start-page: 2821 year: 2001 end-page: 2832 ident: bib15 article-title: On the information content of forest transpiration measurements for identifying canopy conductance model parameters publication-title: Hydrol. Process. – volume: 177 start-page: 172 year: 2016 end-page: 180 ident: bib22 article-title: Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China publication-title: Agric. Water Manag. – reference: Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agricultural Organization of the United Nations (FAO). Rome, Italy. – volume: 31 start-page: 873 year: 2016 end-page: 885 ident: bib44 article-title: Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow publication-title: Trees – year: 2007 ident: bib72 article-title: Optimization Modelling: A Practical Approach – volume: 244 year: 2021 ident: bib2 article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation publication-title: Agric. Water Manag. – reference: . 488968. – volume: 489 start-page: 124 year: 2013 end-page: 134 ident: bib52 article-title: Quantifying the combined effects of climatic, crop and soil factors on surface resistance in a maize field publication-title: J. Hydrol. – volume: 37 start-page: 689 issue: 3 year: 2001 ident: 10.1016/j.agwat.2022.108061_bib48 article-title: Stomatal control of transpiration: examination of the Jarvis-type representation of canopy resistance in relation to humidity publication-title: Water Resour. Res. doi: 10.1029/2000WR900324 – volume: 49 start-page: 387 issue: 90001 year: 1998 ident: 10.1016/j.agwat.2022.108061_bib40 article-title: Stomatal control of photosynthesis and transpiration publication-title: J. Exp. Bot. doi: 10.1093/jexbot/49.suppl_1.387 – volume: 259 start-page: 241 year: 2018 ident: 10.1016/j.agwat.2022.108061_bib62 article-title: Enhancing electronic nose performance based on a novel QPSO-RBM technique publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2017.12.026 – volume: 590 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib59 article-title: Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125435 – volume: 544 start-page: 242 year: 2017 ident: 10.1016/j.agwat.2022.108061_bib29 article-title: Soil-water content characterisation in a modified Jarvis-Stewart model: a case study of a conifer forest on a shallow unconfined aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.041 – volume: 390 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib8 article-title: Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm publication-title: Appl. Math. Comput. – volume: 538 start-page: 194 year: 2016 ident: 10.1016/j.agwat.2022.108061_bib39 article-title: Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.04.002 – volume: 12 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib23 article-title: A parameter optimizer based on genetic algorithm for the simulation of carbonate facies publication-title: Intell. Syst. Appl. – volume: 96 start-page: 25 issue: 1 year: 1970 ident: 10.1016/j.agwat.2022.108061_bib38 article-title: Scheduling irrigations using climate-crop-soil data publication-title: J. Irrig. Drain. Div. doi: 10.1061/JRCEA4.0000699 – volume: 95 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib93 article-title: A new quantum particle swarm optimization algorithm for controller placement problem in software-defined networking publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107456 – volume: 91 start-page: 350 issue: 3 year: 1992 ident: 10.1016/j.agwat.2022.108061_bib43 article-title: Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements publication-title: Oecologia doi: 10.1007/BF00317623 – volume: 503 start-page: 153 year: 2013 ident: 10.1016/j.agwat.2022.108061_bib53 article-title: Measuring and modeling maize evapotranspiration under plastic film-mulching condition publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.07.033 – volume: 66 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib80 article-title: Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102690 – volume: 50 start-page: 6154 issue: 7 year: 2014 ident: 10.1016/j.agwat.2022.108061_bib81 article-title: Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia publication-title: Water Resour. Res. doi: 10.1002/2013WR014818 – volume: 243 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib12 article-title: Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106447 – ident: 10.1016/j.agwat.2022.108061_bib4 – ident: 10.1016/j.agwat.2022.108061_bib67 – volume: 15 start-page: 2821 issue: 14 year: 2001 ident: 10.1016/j.agwat.2022.108061_bib15 article-title: On the information content of forest transpiration measurements for identifying canopy conductance model parameters publication-title: Hydrol. Process. doi: 10.1002/hyp.270 – volume: 13 start-page: 251 issue: 05 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib32 article-title: Adaptive optimization swarm algorithm ensemble model applied to the classification of unbalanced data publication-title: Intell. Inf. Manag. – volume: 23 start-page: 449 issue: 4 year: 1998 ident: 10.1016/j.agwat.2022.108061_bib68 article-title: A canopy resistance estimation method to calculate transpiration publication-title: Phys. Chem. Earth doi: 10.1016/S0079-1946(98)00052-4 – volume: 63 start-page: 277 issue: 4 year: 1947 ident: 10.1016/j.agwat.2022.108061_bib13 article-title: A laboratory procdure for determining the field capacity of soils publication-title: Soil Sci. doi: 10.1097/00010694-194704000-00003 – volume: 202 start-page: 156 year: 2018 ident: 10.1016/j.agwat.2022.108061_bib76 article-title: Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.02.021 – volume: 122 start-page: 215 issue: 3–4 year: 2004 ident: 10.1016/j.agwat.2022.108061_bib31 article-title: Effect of soil moisture on canopy conductance of Amazonian rainforest publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2003.09.006 – volume: 601 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib3 article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126526 – volume: 208 start-page: 1 year: 2015 ident: 10.1016/j.agwat.2022.108061_bib51 article-title: Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions publication-title: Agric. Meteor. doi: 10.1016/j.agrformet.2015.04.002 – volume: 15 start-page: 2449 year: 2011 ident: 10.1016/j.agwat.2022.108061_bib58 article-title: MIMO radar array synthesis using QPSO with normal distributed contraction-expansion factor publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.08.460 – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib89 article-title: Parameterization and application of stanghellini model for estimating greenhouse cucumber transpiration publication-title: Water doi: 10.3390/w12020517 – volume: 99 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib61 article-title: QPSO algorithm based on Lévy flight and its application in fuzzy portfolio publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106894 – volume: 3 start-page: 834 issue: 6 year: 2016 ident: 10.1016/j.agwat.2022.108061_bib92 article-title: A review of remote sensing based actual evapotranspiration estimation publication-title: Wires Water doi: 10.1002/wat2.1168 – volume: 197 start-page: 76 year: 2014 ident: 10.1016/j.agwat.2022.108061_bib26 article-title: Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2014.05.012 – volume: 271 start-page: 375 year: 2019 ident: 10.1016/j.agwat.2022.108061_bib6 article-title: Quantifying plant transpiration and canopy conductance using eddy flux data: an underlying water use efficiency method publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2019.02.035 – volume: 176 start-page: 851 issue: 1 year: 2018 ident: 10.1016/j.agwat.2022.108061_bib65 article-title: Stomatal VPD RESPONSE: THERE IS MORE TO THE STORY Than ABA publication-title: Plant Physiol. doi: 10.1104/pp.17.00912 – volume: 63 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.agwat.2022.108061_bib49 article-title: Method of path coefficients: a trademark of Sewall Wright publication-title: Hum. Biol. – ident: 10.1016/j.agwat.2022.108061_bib79 doi: 10.1109/CEC.2004.1330875 – volume: 177 start-page: 172 year: 2016 ident: 10.1016/j.agwat.2022.108061_bib22 article-title: Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.07.015 – volume: 4 start-page: 138 year: 2013 ident: 10.1016/j.agwat.2022.108061_bib14 article-title: Open or close the gate - stomata action under the control of phytohormones in drought stress conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00138 – volume: 44 start-page: 844 issue: 2s year: 2013 ident: 10.1016/j.agwat.2022.108061_bib18 article-title: Evapotranspiration models for a maize agro-ecosystem in irrigated and rainfed conditions publication-title: J. Agric. Eng. doi: 10.4081/jae.2013.411 – ident: 10.1016/j.agwat.2022.108061_bib42 doi: 10.1109/ICNN.1995.488968 – volume: 268 start-page: 189 year: 2019 ident: 10.1016/j.agwat.2022.108061_bib73 article-title: Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2019.01.031 – volume: 201 start-page: 187 year: 2015 ident: 10.1016/j.agwat.2022.108061_bib30 article-title: The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2014.11.010 – volume: 489 start-page: 124 year: 2013 ident: 10.1016/j.agwat.2022.108061_bib52 article-title: Quantifying the combined effects of climatic, crop and soil factors on surface resistance in a maize field publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.03.002 – volume: 109 start-page: 1803 issue: 9–10 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib70 article-title: Imbalanced regression and extreme value prediction publication-title: Mach. Learn. doi: 10.1007/s10994-020-05900-9 – ident: 10.1016/j.agwat.2022.108061_bib19 – volume: 178 start-page: 314 year: 2016 ident: 10.1016/j.agwat.2022.108061_bib54 article-title: Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.09.016 – volume: 113 start-page: 72 year: 2015 ident: 10.1016/j.agwat.2022.108061_bib87 article-title: Calibrating RZWQM2 model using quantum-behaved particle swarm optimization algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.02.002 – volume: 305 start-page: 35 issue: 1–2 year: 2008 ident: 10.1016/j.agwat.2022.108061_bib85 article-title: A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest publication-title: Plant Soil doi: 10.1007/s11104-007-9399-x – volume: 203 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib20 article-title: National-scale development and calibration of empirical models for predicting daily global solar radiation in China publication-title: Energ. Convers. Manag. doi: 10.1016/j.enconman.2019.112236 – volume: 31 start-page: 873 issue: 3 year: 2016 ident: 10.1016/j.agwat.2022.108061_bib44 article-title: Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow publication-title: Trees doi: 10.1007/s00468-016-1513-3 – volume: 116 start-page: 497 issue: 492 year: 1990 ident: 10.1016/j.agwat.2022.108061_bib74 article-title: The theoretical relationship between foliage temperature and canopy resistance in sparse crops publication-title: Q J. R. Meteorol. Soc. doi: 10.1002/qj.49711649213 – volume: 34 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib1 article-title: Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt publication-title: J. Hydrol.: Reg. Stud. – volume: 46 issue: 8 year: 2010 ident: 10.1016/j.agwat.2022.108061_bib35 article-title: On the dynamics of canopy resistance: generalized linear estimation and relationships with primary micrometeorological variables publication-title: Water Resour. Res. doi: 10.1029/2009WR008484 – volume: 67 start-page: 89 issue: 3 year: 2011 ident: 10.1016/j.agwat.2022.108061_bib88 article-title: Application of the two-layer model for predicting transpiration from the rice canopy and water surface evaporation beneath the canopy publication-title: J. Agric. Meteorol. doi: 10.2480/agrmet.67.3.1 – volume: 244 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib2 article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106622 – volume: 148 start-page: 1034 issue: 6–7 year: 2008 ident: 10.1016/j.agwat.2022.108061_bib36 article-title: On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2008.02.001 – volume: 13 year: 2022 ident: 10.1016/j.agwat.2022.108061_bib27 article-title: Estimating bulk stomatal conductance in grapevine canopies publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.839378 – year: 2007 ident: 10.1016/j.agwat.2022.108061_bib72 – volume: 3 start-page: 513 issue: 6 year: 1983 ident: 10.1016/j.agwat.2022.108061_bib41 article-title: Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne: rôle d'un coefficient cultural publication-title: Agronomie doi: 10.1051/agro:19830603 – volume: 81 start-page: 1 issue: 1–2 year: 2006 ident: 10.1016/j.agwat.2022.108061_bib5 article-title: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2005.03.007 – volume: 162 start-page: 98 year: 2018 ident: 10.1016/j.agwat.2022.108061_bib84 article-title: A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.04.039 – volume: 159 start-page: 1 year: 2019 ident: 10.1016/j.agwat.2022.108061_bib95 article-title: Improved application of the Penman–Monteith model using an enhanced Jarvis model that considers the effects of nitrogen fertilization on canopy resistance publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.12.007 – volume: 54 start-page: 155 issue: 2–4 year: 1991 ident: 10.1016/j.agwat.2022.108061_bib63 article-title: Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains publication-title: Agric. Meteorol. doi: 10.1016/0168-1923(91)90004-A – volume: 119 start-page: 1458 issue: 7 year: 2014 ident: 10.1016/j.agwat.2022.108061_bib64 article-title: Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis publication-title: J. Geophys. Res.: Biogeosci. doi: 10.1002/2014JG002623 – volume: 604 year: 2022 ident: 10.1016/j.agwat.2022.108061_bib17 article-title: Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127207 – volume: 29 start-page: 165 issue: 3 year: 2009 ident: 10.1016/j.agwat.2022.108061_bib83 article-title: Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides publication-title: Biosci. Rep. doi: 10.1042/BSR20080061 – volume: 44 issue: 9 year: 2008 ident: 10.1016/j.agwat.2022.108061_bib71 article-title: Quantitative comparison of canopy conductance models using a Bayesian approach publication-title: Water Resour. Res doi: 10.1029/2007WR006761 – volume: 30 start-page: 689 issue: 6 year: 2003 ident: 10.1016/j.agwat.2022.108061_bib60 article-title: Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines publication-title: Funct. Plant Biol. doi: 10.1071/FP02181 – volume: 587 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib82 article-title: Improving the Jarvis-type model with modified temperature and radiation functions for sap flow simulations publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124981 – volume: 234 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib11 article-title: Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling? publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106112 – volume: 104 start-page: 193 year: 2012 ident: 10.1016/j.agwat.2022.108061_bib57 article-title: Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2011.12.014 – volume: 16 start-page: 210 issue: 1 year: 2017 ident: 10.1016/j.agwat.2022.108061_bib91 article-title: Towards a more flexible representation of water stress effects in the nonlinear Jarvis model publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(15)61307-7 – volume: 64 start-page: 160 issue: 1 year: 2022 ident: 10.1016/j.agwat.2022.108061_bib9 article-title: Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast publication-title: Oceanologia doi: 10.1016/j.oceano.2021.10.004 – volume: 65 start-page: 21 issue: 1–2 year: 1993 ident: 10.1016/j.agwat.2022.108061_bib16 article-title: A multiple-source land surface energy balance model for use in general circulation models publication-title: Agric. Meteorol. doi: 10.1016/0168-1923(93)90036-H – volume: 266–267 start-page: 109 year: 2019 ident: 10.1016/j.agwat.2022.108061_bib25 article-title: Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2018.12.003 – volume: 116 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib7 article-title: Fast linear least-squares method for ultrasound attenuation and backscatter estimation publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106503 – volume: 97 start-page: 1355 issue: 8 year: 2016 ident: 10.1016/j.agwat.2022.108061_bib45 article-title: Visualizing vapor pressure: a mechanical demonstration of liquid–vapor phase equilibrium publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-15-00173.1 – volume: 234 start-page: 212 year: 2017 ident: 10.1016/j.agwat.2022.108061_bib34 article-title: Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2017.01.005 – volume: 29 start-page: 1379 issue: 5 year: 1993 ident: 10.1016/j.agwat.2022.108061_bib77 article-title: Comparison of penman-monteith, shuttleworth-wallace, and modified priestley-taylor evapotranspiration models for wildland vegetation in semiarid rangeland publication-title: Water Resour. Res. doi: 10.1029/93WR00333 – volume: 21 start-page: 1349 issue: 6 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib94 article-title: Uncertainties caused by resistances in evapotranspiration estimation using high-density eddy covariance measurements publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-19-0191.1 – volume: 273 start-page: 593 issue: 927 year: 1997 ident: 10.1016/j.agwat.2022.108061_bib37 article-title: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – ident: 10.1016/j.agwat.2022.108061_bib56 – volume: 23 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.agwat.2022.108061_bib69 article-title: Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration publication-title: Irrig. Sci. doi: 10.1007/s00271-003-0087-1 – start-page: 253 year: 2005 ident: 10.1016/j.agwat.2022.108061_bib10 article-title: Water content and potential, measurement publication-title: Encycl. Soils Environ. doi: 10.1016/B0-12-348530-4/00502-6 – start-page: 19 year: 1988 ident: 10.1016/j.agwat.2022.108061_bib78 article-title: Modelling surface conductance of pine forest publication-title: Agric. Meteorol. doi: 10.1016/0168-1923(88)90003-2 – start-page: 28 year: 2020 ident: 10.1016/j.agwat.2022.108061_bib75 – volume: 187 year: 2022 ident: 10.1016/j.agwat.2022.108061_bib50 article-title: A calibration method of DVL in integrated navigation system based on particle swarm optimization publication-title: Measurement doi: 10.1016/j.measurement.2021.110325 – volume: 149 start-page: 1565 issue: 10 year: 2009 ident: 10.1016/j.agwat.2022.108061_bib24 article-title: Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2009.03.008 – year: 1975 ident: 10.1016/j.agwat.2022.108061_bib33 – volume: 603 year: 2021 ident: 10.1016/j.agwat.2022.108061_bib86 article-title: Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127028 – volume: 3 start-page: 309 issue: 4 year: 1987 ident: 10.1016/j.agwat.2022.108061_bib28 article-title: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements publication-title: Tree Physiol. doi: 10.1093/treephys/3.4.309 – volume: 315 year: 2022 ident: 10.1016/j.agwat.2022.108061_bib21 article-title: Phenology and canopy conductance limit the accuracy of 20 evapotranspiration models in predicting transpiration publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2022.108824 – volume: 21 start-page: 297 issue: 3 year: 1985 ident: 10.1016/j.agwat.2022.108061_bib55 article-title: Canopy conductance of coniferous forests related to climate publication-title: Water Resour. Res. doi: 10.1029/WR021i003p00297 – volume: 15 start-page: 475 issue: 3 year: 2017 ident: 10.1016/j.agwat.2022.108061_bib66 article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model publication-title: Landslides doi: 10.1007/s10346-017-0883-y – volume: 3 start-page: 29 issue: 1 year: 1980 ident: 10.1016/j.agwat.2022.108061_bib46 article-title: Stomatal response to humidity: implications for transpiration publication-title: Plant Cell Environ. doi: 10.1111/1365-3040.ep11580512 – volume: 63 start-page: 5354 issue: 22 year: 2015 ident: 10.1016/j.agwat.2022.108061_bib90 article-title: Emissions of 1,3-dichloropropene and chloropicrin after soil fumigation under field conditions publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b01309 – volume: 44 issue: 10 year: 2008 ident: 10.1016/j.agwat.2022.108061_bib47 article-title: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation publication-title: Water Resour. Res. doi: 10.1029/2007WR006562 |
| SSID | ssj0004047 |
| Score | 2.4572022 |
| Snippet | Accurate estimates of plant transpiration (Tsf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance... Accurate estimates of plant transpiration (Tₛf) are essential to maximizing the efficient use of water. When only considering the surface canopy resistance... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108061 |
| SubjectTerms | air temperature algorithms apples canopy Canopy resistance China Constraint function decision making developmental stages Growth period segmentation leaf area index light intensity meteorological data orchards soil water content Swarm intelligence optimization algorithms transpiration trees vapor pressure deficit water management water use efficiency |
| Title | Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model |
| URI | https://dx.doi.org/10.1016/j.agwat.2022.108061 https://www.proquest.com/docview/3153815958 |
| Volume | 276 |
| WOSCitedRecordID | wos000899245100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AIEXJ dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHNL7EgCEjcSRTY7v5OE4ItEM37TBQxcXy10qq1Z3aZp048pfzbMdJ14qKHbhYqeVYTt8vLz_bz7-H0Eeaare7peFNIzJhiuikVBlc9UspTCZ14cV0vg_zs7NiNCrPe73f8SzMzVVubXF7W17_V1NDHRjbHZ29h7nbTqECrsHoUILZofwnwzteaVwAuSuccnnVGNnpaQA_BYZZL-IhqXNjp8Imp06jyq3I-sQ4nYZEE5o-A78yrX7Bz4kA19Lkz1nntcfjeSfisRJOeXG6FVgzavKnDKtVdwDtx0_hV2uHdbsdUlcBo3YsZ7FyWNUhOqC2K1Otr1UQGsObW5dGXTBGHvLyRP9L8nUP6mIegzz7lnMP6wyTIzGG54CpPSFHXeu7Utobn7g28DDGtE2474S7Tnjo5AF6SPJBWcZpeTxb2_dJ6tqRR-UqHyO4NZK_sZuN77wnLxf76Gkz68DHAS3PUM_Y5-hJZzTzAlUeN9jhBt_BDW5xgz1uMOAGb-AGe0DgDjfY4Qa3uMEBN6HZS_Tt65eLzydJk4cjUcDnlglMEdJCKq36DDw8ZdJQk2maKZYanREiB6lOhaS6UEwYVjglL6WzvmCXrEyZoa_Qnp1Z8xrh3IhUUEnL7DIFbjiQVOTQbSqFYrKQ2QEi8f_jqhGpd7lSrvgOyx2gT-1N10GjZXfzLBqGNzQz0EcOQNt944doRg5O2O2sCWtm9YJTxxtgYjAo3txvLG_R4-49eYf2lvPaHKJH6mZZLebvPRL_ADWsrrY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+tree+transpiration+estimated+using+the+Penman-Monteith+model+integrated+with+optimized+jarvis+model&rft.jtitle=Agricultural+water+management&rft.au=Xing%2C+Liwen&rft.au=Zhao%2C+Lu&rft.au=Cui%2C+Ningbo&rft.au=Liu%2C+Chunwei&rft.date=2023-02-01&rft.issn=0378-3774&rft.volume=276&rft.spage=108061&rft_id=info:doi/10.1016%2Fj.agwat.2022.108061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agwat_2022_108061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |