No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure

This study opens the black boxes and fills the literature gap by showing how it is possible to fit a very precise Machine Learning model that is highly interpretable, by using a novel ML technique, Extreme Gradient Boosting (XGBoost), and applying new model interpretability improvements. In addition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Research in international business and finance Ročník 61; s. 101649
Hlavní autoři: Carmona, Pedro, Dwekat, Aladdin, Mardawi, Zeena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2022
Témata:
ISSN:0275-5319, 1878-3384
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study opens the black boxes and fills the literature gap by showing how it is possible to fit a very precise Machine Learning model that is highly interpretable, by using a novel ML technique, Extreme Gradient Boosting (XGBoost), and applying new model interpretability improvements. In addition, we identify several significant indicators that could assist in predicting business financial distress. The data were collected from the Eikon database from a sample of 1760 French firms (1585 healthy and 175 failing) in 2018. Identifying the leading indicators of business failure is critical in assisting regulators, and for business managers to act expeditiously before a distressed business reaches crisis point. Our results reveal that higher levels of equity per employee, solvency, the current ratio, net profitability, and a sustainable return on investment are associated with a lower risk of business failure. In contrast, a higher number of employees leads to business failure. [Display omitted] •Bankruptcy prediction techniques have recently switched to intelligent machine learning models.•Machine Learning models are often considered a black box due to their complexity.•Model interpretability is a rapidly expanding ML models.•Using XGBoost and model interpretability could assist in predicting business failure.
AbstractList This study opens the black boxes and fills the literature gap by showing how it is possible to fit a very precise Machine Learning model that is highly interpretable, by using a novel ML technique, Extreme Gradient Boosting (XGBoost), and applying new model interpretability improvements. In addition, we identify several significant indicators that could assist in predicting business financial distress. The data were collected from the Eikon database from a sample of 1760 French firms (1585 healthy and 175 failing) in 2018. Identifying the leading indicators of business failure is critical in assisting regulators, and for business managers to act expeditiously before a distressed business reaches crisis point. Our results reveal that higher levels of equity per employee, solvency, the current ratio, net profitability, and a sustainable return on investment are associated with a lower risk of business failure. In contrast, a higher number of employees leads to business failure. [Display omitted] •Bankruptcy prediction techniques have recently switched to intelligent machine learning models.•Machine Learning models are often considered a black box due to their complexity.•Model interpretability is a rapidly expanding ML models.•Using XGBoost and model interpretability could assist in predicting business failure.
ArticleNumber 101649
Author Mardawi, Zeena
Carmona, Pedro
Dwekat, Aladdin
Author_xml – sequence: 1
  givenname: Pedro
  surname: Carmona
  fullname: Carmona, Pedro
  email: pedro.carmona@uv.es
  organization: Department of Accounting, Universitat de València, València, Spain
– sequence: 2
  givenname: Aladdin
  surname: Dwekat
  fullname: Dwekat, Aladdin
  email: aladdin.dwekat@najah.edu, aldwe@doctor.upv.es
  organization: Department of Accounting, An-Najah National University, Nablus, Palestine
– sequence: 3
  givenname: Zeena
  surname: Mardawi
  fullname: Mardawi, Zeena
  email: zeedwedw@doctor.upv.es
  organization: Department of Accounting, An-Najah National University, Nablus, Palestine
BookMark eNqFkE1PwkAQhjcGEwH9BV7WH1Dcj5a2Bw9KEE2IXjTxtpnuzsJi6ZLdQvDfW8CTBz1NMnmfybzPgPQa3yAh15yNOOPj29UouArsSDAhjpu0PCN9XuRFImWR9kifiTxLMsnLCzKIccWYKBkXfbJ78XTtA9KqBv1JK7_HeEOn-00NrnHNgrZLpJuAxunW-SZSbynQNeila5DWCOGY-pg9eB9bqmuI0VmHgUK98MG1yzV1Da22scvHSC24ehvwkpxbqCNe_cwheX-cvk2ekvnr7HlyP0-0LHiblCnmpeByrBFEbm1uTcrz3DADmZU2NZwXGjSWsipMxlMjASqhtYFUswy4HBJ5uquDjzGgVZvg1hC-FGfqIEqt1FGdOqhTJ3UdVf6itGvh0L8N3f__sHcnFrtau06EitphozuDAXWrjHd_8t_c8pAK
CitedBy_id crossref_primary_10_1080_01605682_2024_2385467
crossref_primary_10_1111_beer_12439
crossref_primary_10_1080_02102412_2024_2423498
crossref_primary_10_3390_electronics11193181
crossref_primary_10_1016_j_compbiomed_2024_108982
crossref_primary_10_1016_j_future_2024_04_037
crossref_primary_10_1016_j_techfore_2024_123829
crossref_primary_10_1080_17421772_2024_2418906
crossref_primary_10_1016_j_ribaf_2022_101744
crossref_primary_10_1108_IJCHM_06_2022_0737
crossref_primary_10_1016_j_jclepro_2024_141035
crossref_primary_10_2478_picbe_2024_0020
crossref_primary_10_1016_j_jtrangeo_2023_103594
crossref_primary_10_1111_joes_70014
crossref_primary_10_1016_j_istruc_2023_105053
crossref_primary_10_1108_K_08_2023_1428
crossref_primary_10_1108_JFRA_05_2024_0280
crossref_primary_10_1108_MEDAR_04_2022_1654
crossref_primary_10_1016_j_ipm_2024_103820
crossref_primary_10_1016_j_hssust_2025_04_002
crossref_primary_10_1016_j_jhydrol_2025_133927
crossref_primary_10_3390_atmos16040456
crossref_primary_10_3390_su17114948
crossref_primary_10_1108_JFRA_10_2024_0719
crossref_primary_10_1080_17517575_2024_2434742
crossref_primary_10_3390_make6010031
crossref_primary_10_1007_s10462_024_10854_8
crossref_primary_10_1016_j_ifacol_2024_07_526
crossref_primary_10_2147_JHC_S429903
crossref_primary_10_1016_j_frl_2023_104145
crossref_primary_10_18559_ebr_2024_2_1149
crossref_primary_10_3390_jtaer19020066
crossref_primary_10_3390_s24020330
crossref_primary_10_1007_s12525_025_00824_5
crossref_primary_10_1016_j_irfa_2024_103381
crossref_primary_10_3390_systems10060252
crossref_primary_10_1016_j_mtcomm_2023_105793
crossref_primary_10_33399_biibfad_1391666
crossref_primary_10_1016_j_compag_2025_110490
crossref_primary_10_1109_ACCESS_2025_3579712
crossref_primary_10_1016_j_compag_2023_108254
crossref_primary_10_1108_MEDAR_05_2022_1698
crossref_primary_10_3390_ma16227178
crossref_primary_10_3390_youth5030068
crossref_primary_10_1016_j_enpol_2025_114812
crossref_primary_10_1080_00036846_2023_2281291
crossref_primary_10_1007_s10614_024_10620_6
Cites_doi 10.1016/j.knosys.2017.05.003
10.1016/j.irfa.2015.01.006
10.3389/fnbot.2013.00021
10.1016/j.indmarman.2017.12.019
10.1016/j.jbusres.2018.11.015
10.1016/j.irfa.2018.07.007
10.1214/aos/1013203451
10.1016/j.jbef.2021.100577
10.1016/j.eswa.2017.01.016
10.1145/2939672.2939785
10.1201/9780429027192
10.1016/j.dss.2007.12.002
10.1016/j.eswa.2016.04.001
10.1007/978-3-319-72598-7_13
10.1080/00949655.2012.666550
10.1214/aos/1016120463
10.1007/s11142-017-9407-1
10.1016/j.knosys.2011.09.017
10.1111/j.1365-2656.2008.01390.x
10.1016/j.eswa.2017.02.017
10.1080/21582041.2020.1806346
10.5172/ser.2.1-2.5
10.1016/j.eswa.2016.04.027
10.1016/j.iref.2018.03.008
10.1016/j.ejor.2016.03.008
10.1016/j.eswa.2012.12.009
10.1016/j.irfa.2017.02.004
10.1016/S0167-9473(01)00065-2
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ribaf.2022.101649
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1878-3384
ExternalDocumentID 10_1016_j_ribaf_2022_101649
S027553192200037X
GroupedDBID --K
--M
.~1
0R~
123
13V
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXUO
ABFNM
ABJNI
ABKBG
ABMAC
ABMVD
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNCT
ACNTT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADMUD
ADOJD
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGTHC
AGUBO
AGUMN
AGYEJ
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AXLSJ
BKOJK
BLXMC
BNSAS
BZJEE
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SEB
SES
SEW
SPCBC
SSB
SSF
SSL
SSZ
T5K
WH7
YNT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AHDLI
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c381t-94e792136cea27ff7fd4177d0da5f3f4d118cace93b8d514d3aab2ccda4c05a13
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805435500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0275-5319
IngestDate Sat Nov 29 07:23:32 EST 2025
Tue Nov 18 22:14:20 EST 2025
Fri Feb 23 02:39:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords C 45
Model interpretability
C46
Business failure
G33
XGBoost
G32
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-94e792136cea27ff7fd4177d0da5f3f4d118cace93b8d514d3aab2ccda4c05a13
OpenAccessLink https://hdl.handle.net/10550/96507
ParticipantIDs crossref_primary_10_1016_j_ribaf_2022_101649
crossref_citationtrail_10_1016_j_ribaf_2022_101649
elsevier_sciencedirect_doi_10_1016_j_ribaf_2022_101649
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Research in international business and finance
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dwekat, Seguí-Mas, Zaid, Tormo-Carbó (bib22) 2021
Faccia, Petratos (bib27) 2021; 11
Chen, T., & Guestrin, C., 2016, XGBoost: A scalable tree boosting system.
Foster, D., 2017, NEW R package that makes XGBoost interpretable. Retrieved from 〈https://medium.com/applied-data-science/new-r-package-the-xgboost-explainer-51dd7d1aa211〉.
Duan, Goodell, Li, Li (bib18) 2021
Faccia, Manni, Capitanio (bib26) 2021; 13
Rapanyane, Sethole (bib51) 2020; 15
Carmona, Climent, Momparler (bib9) 2019; 61
Friedman (bib30) 2001; 29
Goodell, Kumar, Lim, Pattnaik (bib33) 2021
Berryman (bib3) 1993; 2
Momparler, Carmona, Climent (bib44) 2016; 45
Hosaka (bib36) 2019
Momparler, Carmona, Climent (bib45) 2020; 33
Carvalho, Pereira, Cardoso (bib10) 2019; Vol. 8
Biecek, Burzykowski (bib5) 2021
Campillo, Vargas, Ibáñez (bib8) 2018; 47
Cran.r-project.org. (2020). Introducing Correlation Funnel - Customer Churn Example. Retrieved from
Du Jardin (bib19) 2016; 254
Fisher, Rudin, Dominici (bib28) 2018
Friedman (bib31) 2002; 38
Erdogan (bib25) 2013; 83
Stolbov, Shchepeleva (bib53) 2020
Altman (bib2) 1968; 23
Cortés, Martínez, Rubio (bib14) 2008; 37
Gilpin, Bau, Yuan, Bajwa, Specter, Kagal (bib34) 2018
Jones (bib38) 2017; 22
.
Syam, Sharma (bib54) 2018; 69
Alfaro, García, Gámez, Elizondo (bib1) 2008; 45
Oyewo, Ajibola, Ajape (bib50) 2020
Zhou, Si, Fujita (bib59) 2017; 128
Boubaker, Buchanan, Nguyen (bib7) 2016
Mosteanu, Faccia (bib46) 2020; 21
Lee, Choi (bib43) 2013; 40
Xia, Liu, Li, Liu (bib58) 2017; 78
Jabeur, Gharib, Mefteh-Wali, Arfi (bib37) 2021
Eling, Jia (bib23) 2018; 59
Mselmi, Lahiani, Hamza (bib48) 2017; 50
Biecek (bib4) 2018; 19
Friedman, J., Hastie, T., & Tibshirani, R., 2000, Additive logistic regression: A statistical view of boosting. In (Vol. 28, pp. 337–407).
Boehmke, Greenwell (bib6) 2020
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,. Zhou, T. (2019). xgboost: Extreme gradient boosting. R package version 0.90. 0.2. In.
Vega García, Aznarte (bib57) 2020
Tsai, Cheng (bib56) 2012; 27
Mousavi, Ouenniche, Xu (bib47) 2015; 42
Kim, Jo, Shin (bib41) 2016; 59
Elith, J., Leathwick, J.R., & Hastie, T., 2008, A working guide to boosted regression trees. In (Vol. 77, pp. 802–813).
Natekin, Knoll (bib49) 2013; 7
Davies (bib16) 1997
Tian, Yu (bib55) 2017
Du Jardin (bib20) 2017; 75
Dwekat, Seguí-Mas, Tormo-Carbó (bib21) 2020; 33
Khoja, Chipulu, Jayasekera (bib40) 2019
Santhanam, G.R., Holland, B., Kothari, S., & Ranade, N., 2017, Human-on-the-loop automation for detecting software side-channel vulnerabilities.
Doshi-Velez, Kim (bib17) 2017
Le, Viviani (bib42) 2018
Climent, Momparler, Carmona (bib13) 2019; 101
Kalak, Azevedo, Hudson, Karim (bib39) 2017
Hall, Gill (bib35) 2019
Zięba, Tomczak, Tomczak (bib60) 2016; 58
Du Jardin (10.1016/j.ribaf.2022.101649_bib20) 2017; 75
10.1016/j.ribaf.2022.101649_bib32
Le (10.1016/j.ribaf.2022.101649_bib42) 2018
Zhou (10.1016/j.ribaf.2022.101649_bib59) 2017; 128
Biecek (10.1016/j.ribaf.2022.101649_bib4) 2018; 19
Jones (10.1016/j.ribaf.2022.101649_bib38) 2017; 22
Dwekat (10.1016/j.ribaf.2022.101649_bib22) 2021
Momparler (10.1016/j.ribaf.2022.101649_bib44) 2016; 45
Stolbov (10.1016/j.ribaf.2022.101649_bib53) 2020
Friedman (10.1016/j.ribaf.2022.101649_bib31) 2002; 38
Momparler (10.1016/j.ribaf.2022.101649_bib45) 2020; 33
Altman (10.1016/j.ribaf.2022.101649_bib2) 1968; 23
Hall (10.1016/j.ribaf.2022.101649_bib35) 2019
Oyewo (10.1016/j.ribaf.2022.101649_bib50) 2020
Davies (10.1016/j.ribaf.2022.101649_bib16) 1997
Mselmi (10.1016/j.ribaf.2022.101649_bib48) 2017; 50
Friedman (10.1016/j.ribaf.2022.101649_bib30) 2001; 29
Xia (10.1016/j.ribaf.2022.101649_bib58) 2017; 78
Cortés (10.1016/j.ribaf.2022.101649_bib14) 2008; 37
Tian (10.1016/j.ribaf.2022.101649_bib55) 2017
Fisher (10.1016/j.ribaf.2022.101649_bib28) 2018
Berryman (10.1016/j.ribaf.2022.101649_bib3) 1993; 2
Faccia (10.1016/j.ribaf.2022.101649_bib26) 2021; 13
Boubaker (10.1016/j.ribaf.2022.101649_bib7) 2016
10.1016/j.ribaf.2022.101649_bib29
Erdogan (10.1016/j.ribaf.2022.101649_bib25) 2013; 83
Duan (10.1016/j.ribaf.2022.101649_bib18) 2021
10.1016/j.ribaf.2022.101649_bib24
Climent (10.1016/j.ribaf.2022.101649_bib13) 2019; 101
Eling (10.1016/j.ribaf.2022.101649_bib23) 2018; 59
Carmona (10.1016/j.ribaf.2022.101649_bib9) 2019; 61
Du Jardin (10.1016/j.ribaf.2022.101649_bib19) 2016; 254
Rapanyane (10.1016/j.ribaf.2022.101649_bib51) 2020; 15
Syam (10.1016/j.ribaf.2022.101649_bib54) 2018; 69
10.1016/j.ribaf.2022.101649_bib11
Goodell (10.1016/j.ribaf.2022.101649_bib33) 2021
Gilpin (10.1016/j.ribaf.2022.101649_bib34) 2018
Campillo (10.1016/j.ribaf.2022.101649_bib8) 2018; 47
10.1016/j.ribaf.2022.101649_bib52
Biecek (10.1016/j.ribaf.2022.101649_bib5) 2021
Lee (10.1016/j.ribaf.2022.101649_bib43) 2013; 40
Jabeur (10.1016/j.ribaf.2022.101649_bib37) 2021
Mosteanu (10.1016/j.ribaf.2022.101649_bib46) 2020; 21
10.1016/j.ribaf.2022.101649_bib15
10.1016/j.ribaf.2022.101649_bib12
Natekin (10.1016/j.ribaf.2022.101649_bib49) 2013; 7
Tsai (10.1016/j.ribaf.2022.101649_bib56) 2012; 27
Dwekat (10.1016/j.ribaf.2022.101649_bib21) 2020; 33
Hosaka (10.1016/j.ribaf.2022.101649_bib36) 2019
Doshi-Velez (10.1016/j.ribaf.2022.101649_bib17) 2017
Zięba (10.1016/j.ribaf.2022.101649_bib60) 2016; 58
Carvalho (10.1016/j.ribaf.2022.101649_bib10) 2019; Vol. 8
Khoja (10.1016/j.ribaf.2022.101649_bib40) 2019
Kim (10.1016/j.ribaf.2022.101649_bib41) 2016; 59
Alfaro (10.1016/j.ribaf.2022.101649_bib1) 2008; 45
Boehmke (10.1016/j.ribaf.2022.101649_bib6) 2020
Kalak (10.1016/j.ribaf.2022.101649_bib39) 2017
Mousavi (10.1016/j.ribaf.2022.101649_bib47) 2015; 42
Faccia (10.1016/j.ribaf.2022.101649_bib27) 2021; 11
Vega García (10.1016/j.ribaf.2022.101649_bib57) 2020
References_xml – start-page: 1
  year: 2018
  end-page: 11
  ident: bib34
  article-title: Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning
  publication-title: arXiv:1806. 00069
– volume: 128
  start-page: 93
  year: 2017
  end-page: 101
  ident: bib59
  article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method
  publication-title: Knowl. -Based Syst.
– year: 2021
  ident: bib33
  article-title: Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis
  publication-title: J. Behav. Exp. Financ.
– volume: 40
  start-page: 2941
  year: 2013
  end-page: 2946
  ident: bib43
  article-title: A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis
  publication-title: Expert Syst. Appl.
– reference: Santhanam, G.R., Holland, B., Kothari, S., & Ranade, N., 2017, Human-on-the-loop automation for detecting software side-channel vulnerabilities.
– year: 2019
  ident: bib35
  publication-title: An Introduction to Machine Learning Interpretability
– start-page: 66
  year: 2019
  ident: bib40
  article-title: Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data
  publication-title: Int. Rev. Financ. Anal.
– volume: 33
  start-page: 3017
  year: 2020
  end-page: 3033
  ident: bib45
  article-title: Revisiting bank failure in the United States: a fuzzy-set analysis
  publication-title: Econ. Res. -Èkon. Istraz.
– year: 2020
  ident: bib50
  article-title: Characteristics of consulting firms associated with the diffusion of big data analytics
  publication-title: J. Asian Bus. Econ. Stud., Ahead--Print. (Ahead--Print. )
– volume: 22
  start-page: 1366
  year: 2017
  end-page: 1422
  ident: bib38
  article-title: Corporate bankruptcy prediction: a high dimensional analysis
  publication-title: Rev. Account. Stud.
– volume: 27
  start-page: 333
  year: 2012
  end-page: 342
  ident: bib56
  article-title: Simple instance selection for bankruptcy prediction
  publication-title: Knowl. -Based Syst.
– volume: 42
  start-page: 64
  year: 2015
  end-page: 75
  ident: bib47
  article-title: Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework
  publication-title: Int. Rev. Financ. Anal.
– year: 2021
  ident: bib5
  publication-title: Explan. Model Anal.
– reference: Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,. Zhou, T. (2019). xgboost: Extreme gradient boosting. R package version 0.90. 0.2. In.
– volume: 45
  start-page: 63
  year: 2016
  end-page: 91
  ident: bib44
  article-title: La Predicción Del Fracaso Bancario Con La Metodología “Boosting Classification Tree”
  publication-title: Rev. Esp. De. Financ. Y. Contab.
– reference: Cran.r-project.org. (2020). Introducing Correlation Funnel - Customer Churn Example. Retrieved from
– reference: Friedman, J., Hastie, T., & Tibshirani, R., 2000, Additive logistic regression: A statistical view of boosting. In (Vol. 28, pp. 337–407).
– start-page: 166
  year: 2021
  ident: bib37
  article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction
  publication-title: Technol. Forecast. Soc. Change
– year: 2016
  ident: bib7
  article-title: Risk Management in Emerging Markets: Issues, Framework, and Modeling
– year: 1997
  ident: bib16
  publication-title: Art of Managing Finance
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib30
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
– year: 2020
  ident: bib6
  article-title: Hands-On Machine Learning with R
– reference: Chen, T., & Guestrin, C., 2016, XGBoost: A scalable tree boosting system.
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: bib31
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
– start-page: 42
  year: 2017
  ident: bib39
  article-title: Stock liquidity and SMEs’ likelihood of bankruptcy: Evidence from the US market
  publication-title: Res. Int. Bus. Financ.
– volume: 11
  year: 2021
  ident: bib27
  article-title: Blockchain, enterprise resource planning (ERP) and accounting information systems (AIS): Research on e-procurement and system integration
  publication-title: Appl. Sci. (Switz. )
– volume: 69
  start-page: 135
  year: 2018
  end-page: 146
  ident: bib54
  article-title: Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice
  publication-title: Ind. Mark. Manag.
– start-page: 1
  year: 2017
  end-page: 13
  ident: bib17
  article-title: A Roadmap for a Rigorous Science of Interpretability
  publication-title: arXiv Prepr. arXiv:1702. 08608v1
– volume: 21
  year: 2020
  ident: bib46
  article-title: Digital systems and new challenges of financial management – fintech, XBRL, blockchain and cryptocurrencies
  publication-title: Qual. - Access Success
– volume: 47
  start-page: 507
  year: 2018
  end-page: 532
  ident: bib8
  article-title: Analysis of the algorithm Gradient Boosting Machine (GBM) in business failure prediction
  publication-title: Rev. Esp. De. Financ. Y. Contab.
– volume: 33
  start-page: 3580
  year: 2020
  end-page: 3603
  ident: bib21
  article-title: The effect of the board on corporate social responsibility: bibliometric and social network analysis
  publication-title: Econ. Res. -Èkon. Istraz.
– start-page: 56
  year: 2020
  ident: bib57
  article-title: Shapley additive explanations for NO2 forecasting
  publication-title: Ecol. Inform.
– volume: 7
  start-page: 21
  year: 2013
  ident: bib49
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobotics
– volume: 59
  start-page: 58
  year: 2018
  end-page: 76
  ident: bib23
  article-title: Business failure, efficiency, and volatility: Evidence from the European insurance industry
  publication-title: Int. Rev. Financ. Anal.
– volume: 13
  year: 2021
  ident: bib26
  article-title: Mandatory esg reporting and xbrl taxonomies combination: Esg ratings and income statement, a sustainable value-added disclosure
  publication-title: Sustain. (Switz. )
– volume: 83
  year: 2013
  ident: bib25
  article-title: Prediction of bankruptcy using support vector machines: An application to bank bankruptcy
  publication-title: J. Stat. Comput. Simul.
– volume: 37
  start-page: 13
  year: 2008
  end-page: 32
  ident: bib14
  article-title: FIAMM return persistence analysis and the determinants of the fees charged
  publication-title: Span. J. Financ. Account. / Rev. Esp. De. Financ. Y. Contab.
– year: 2021
  ident: bib22
  article-title: Corporate governance and corporate social responsibility: mapping the most critical drivers in the board academic literature
  publication-title: Meditari Account. Res.
– start-page: 20
  year: 2018
  ident: bib28
  article-title: Model Class Reliance: Variable Importance Measures for any Machine Learning Model Class, from the “Rashomon” Perspective
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib4
  article-title: Dalex: Explainers for complex predictive models in R
  publication-title: J. Mach. Learn. Res.
– volume: 101
  start-page: 885
  year: 2019
  end-page: 896
  ident: bib13
  article-title: Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach
  publication-title: J. Bus. Res.
– reference: Foster, D., 2017, NEW R package that makes XGBoost interpretable. Retrieved from 〈https://medium.com/applied-data-science/new-r-package-the-xgboost-explainer-51dd7d1aa211〉.
– volume: 45
  start-page: 110
  year: 2008
  end-page: 122
  ident: bib1
  article-title: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
  publication-title: Decis. Support Syst.
– year: 2021
  ident: bib18
  article-title: Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set
  publication-title: Financ. Res. Lett.
– volume: 15
  start-page: 489
  year: 2020
  end-page: 501
  ident: bib51
  article-title: The rise of artificial intelligence and robots in the 4th Industrial Revolution: implications for future South African job creation
  publication-title: Contemp. Soc. Sci.
– volume: 78
  start-page: 225
  year: 2017
  end-page: 241
  ident: bib58
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst. Appl.
– volume: Vol. 8
  year: 2019
  ident: bib10
  publication-title: Mach. Learn. Interpret.: A Surv. Methods Metr.
– volume: 61
  start-page: 304
  year: 2019
  end-page: 323
  ident: bib9
  article-title: Predicting failure in the US banking sector: An extreme gradient boosting approach
  publication-title: Int. Rev. Econ. Financ.
– volume: 59
  start-page: 226
  year: 2016
  end-page: 234
  ident: bib41
  article-title: Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 67
  year: 2017
  end-page: 80
  ident: bib48
  article-title: Financial distress prediction: The case of French small and medium-sized firms
  publication-title: Int. Rev. Financ. Anal.
– start-page: 51
  year: 2017
  ident: bib55
  article-title: Financial ratios and bankruptcy predictions: An international evidence
  publication-title: Int. Rev. Econ. Financ.
– volume: 58
  start-page: 93
  year: 2016
  end-page: 101
  ident: bib60
  article-title: Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction
  publication-title: Expert Syst. Appl.
– start-page: 44
  year: 2018
  ident: bib42
  article-title: Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios
  publication-title: Res. Int. Bus. Financ.
– volume: 254
  start-page: 236
  year: 2016
  end-page: 252
  ident: bib19
  article-title: A two-stage classification technique for bankruptcy prediction
  publication-title: Eur. J. Oper. Res.
– volume: 23
  start-page: 589
  year: 1968
  end-page: 609
  ident: bib2
  publication-title: Financ. Ratios, Discrim. Anal. Predict. Corp. Bankruptcy
– reference: .
– volume: 75
  start-page: 25
  year: 2017
  end-page: 43
  ident: bib20
  article-title: Dynamics of firm financial evolution and bankruptcy prediction
  publication-title: Expert Syst. Appl.
– reference: Elith, J., Leathwick, J.R., & Hastie, T., 2008, A working guide to boosted regression trees. In (Vol. 77, pp. 802–813).
– start-page: 117
  year: 2019
  ident: bib36
  article-title: Bankruptcy prediction using imaged financial ratios and convolutional neural networks
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 5
  year: 1993
  end-page: 27
  ident: bib3
  article-title: Small Business Failure and Bankruptcy: What Progress Has Been Made in a Decade?
  publication-title: Small Enterp. Res.
– start-page: 52
  year: 2020
  ident: bib53
  article-title: Systemic risk, economic policy uncertainty and firm bankruptcies: Evidence from multivariate causal inference
  publication-title: Res. Int. Bus. Financ.
– volume: 33
  start-page: 3580
  issue: 1
  year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib21
  article-title: The effect of the board on corporate social responsibility: bibliometric and social network analysis
  publication-title: Econ. Res. -Èkon. Istraz.
– start-page: 166
  year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib37
  article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction
  publication-title: Technol. Forecast. Soc. Change
– volume: 128
  start-page: 93
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib59
  article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2017.05.003
– volume: 47
  start-page: 507
  issue: 4
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib8
  article-title: Analysis of the algorithm Gradient Boosting Machine (GBM) in business failure prediction
  publication-title: Rev. Esp. De. Financ. Y. Contab.
– start-page: 1
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib34
  article-title: Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning
  publication-title: arXiv:1806. 00069
– volume: 11
  issue: 15
  year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib27
  article-title: Blockchain, enterprise resource planning (ERP) and accounting information systems (AIS): Research on e-procurement and system integration
  publication-title: Appl. Sci. (Switz. )
– volume: 42
  start-page: 64
  year: 2015
  ident: 10.1016/j.ribaf.2022.101649_bib47
  article-title: Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2015.01.006
– volume: 7
  start-page: 21
  year: 2013
  ident: 10.1016/j.ribaf.2022.101649_bib49
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2013.00021
– volume: Vol. 8
  year: 2019
  ident: 10.1016/j.ribaf.2022.101649_bib10
  publication-title: Mach. Learn. Interpret.: A Surv. Methods Metr.
– year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib18
  article-title: Assessing machine learning for forecasting economic risk: Evidence from an expanded Chinese financial information set
  publication-title: Financ. Res. Lett.
– volume: 69
  start-page: 135
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib54
  article-title: Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice
  publication-title: Ind. Mark. Manag.
  doi: 10.1016/j.indmarman.2017.12.019
– year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib22
  article-title: Corporate governance and corporate social responsibility: mapping the most critical drivers in the board academic literature
  publication-title: Meditari Account. Res.
– volume: 101
  start-page: 885
  year: 2019
  ident: 10.1016/j.ribaf.2022.101649_bib13
  article-title: Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2018.11.015
– start-page: 42
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib39
  article-title: Stock liquidity and SMEs’ likelihood of bankruptcy: Evidence from the US market
  publication-title: Res. Int. Bus. Financ.
– volume: 59
  start-page: 58
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib23
  article-title: Business failure, efficiency, and volatility: Evidence from the European insurance industry
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2018.07.007
– start-page: 117
  year: 2019
  ident: 10.1016/j.ribaf.2022.101649_bib36
  article-title: Bankruptcy prediction using imaged financial ratios and convolutional neural networks
  publication-title: Expert Syst. Appl.
– start-page: 44
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib42
  article-title: Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios
  publication-title: Res. Int. Bus. Financ.
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.ribaf.2022.101649_bib30
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: 10.1016/j.ribaf.2022.101649_bib12
– year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib33
  article-title: Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis
  publication-title: J. Behav. Exp. Financ.
  doi: 10.1016/j.jbef.2021.100577
– volume: 37
  start-page: 13
  issue: 137
  year: 2008
  ident: 10.1016/j.ribaf.2022.101649_bib14
  article-title: FIAMM return persistence analysis and the determinants of the fees charged
  publication-title: Span. J. Financ. Account. / Rev. Esp. De. Financ. Y. Contab.
– volume: 23
  start-page: 589
  issue: 4
  year: 1968
  ident: 10.1016/j.ribaf.2022.101649_bib2
  publication-title: Financ. Ratios, Discrim. Anal. Predict. Corp. Bankruptcy
– volume: 75
  start-page: 25
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib20
  article-title: Dynamics of firm financial evolution and bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.016
– start-page: 20
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib28
  article-title: Model Class Reliance: Variable Importance Measures for any Machine Learning Model Class, from the “Rashomon” Perspective
  publication-title: J. Mach. Learn. Res.
– start-page: 56
  year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib57
  article-title: Shapley additive explanations for NO2 forecasting
  publication-title: Ecol. Inform.
– start-page: 51
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib55
  article-title: Financial ratios and bankruptcy predictions: An international evidence
  publication-title: Int. Rev. Econ. Financ.
– year: 2019
  ident: 10.1016/j.ribaf.2022.101649_bib35
– volume: 33
  start-page: 3017
  issue: 1
  year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib45
  article-title: Revisiting bank failure in the United States: a fuzzy-set analysis
  publication-title: Econ. Res. -Èkon. Istraz.
– year: 2016
  ident: 10.1016/j.ribaf.2022.101649_bib7
– start-page: 66
  year: 2019
  ident: 10.1016/j.ribaf.2022.101649_bib40
  article-title: Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data
  publication-title: Int. Rev. Financ. Anal.
– ident: 10.1016/j.ribaf.2022.101649_bib11
  doi: 10.1145/2939672.2939785
– start-page: 52
  year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib53
  article-title: Systemic risk, economic policy uncertainty and firm bankruptcies: Evidence from multivariate causal inference
  publication-title: Res. Int. Bus. Financ.
– volume: 21
  issue: 174
  year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib46
  article-title: Digital systems and new challenges of financial management – fintech, XBRL, blockchain and cryptocurrencies
  publication-title: Qual. - Access Success
– year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib5
  publication-title: Explan. Model Anal.
  doi: 10.1201/9780429027192
– volume: 45
  start-page: 110
  issue: 1
  year: 2008
  ident: 10.1016/j.ribaf.2022.101649_bib1
  article-title: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2007.12.002
– volume: 58
  start-page: 93
  year: 2016
  ident: 10.1016/j.ribaf.2022.101649_bib60
  article-title: Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.001
– ident: 10.1016/j.ribaf.2022.101649_bib52
  doi: 10.1007/978-3-319-72598-7_13
– volume: 83
  issue: 8
  year: 2013
  ident: 10.1016/j.ribaf.2022.101649_bib25
  article-title: Prediction of bankruptcy using support vector machines: An application to bank bankruptcy
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2012.666550
– ident: 10.1016/j.ribaf.2022.101649_bib32
  doi: 10.1214/aos/1016120463
– year: 1997
  ident: 10.1016/j.ribaf.2022.101649_bib16
– volume: 22
  start-page: 1366
  issue: 3
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib38
  article-title: Corporate bankruptcy prediction: a high dimensional analysis
  publication-title: Rev. Account. Stud.
  doi: 10.1007/s11142-017-9407-1
– volume: 27
  start-page: 333
  year: 2012
  ident: 10.1016/j.ribaf.2022.101649_bib56
  article-title: Simple instance selection for bankruptcy prediction
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2011.09.017
– ident: 10.1016/j.ribaf.2022.101649_bib24
  doi: 10.1111/j.1365-2656.2008.01390.x
– start-page: 1
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib17
  article-title: A Roadmap for a Rigorous Science of Interpretability
  publication-title: arXiv Prepr. arXiv:1702. 08608v1
– volume: 78
  start-page: 225
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib58
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.017
– year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib6
– volume: 15
  start-page: 489
  issue: 4
  year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib51
  article-title: The rise of artificial intelligence and robots in the 4th Industrial Revolution: implications for future South African job creation
  publication-title: Contemp. Soc. Sci.
  doi: 10.1080/21582041.2020.1806346
– volume: 2
  start-page: 5
  issue: 1–2
  year: 1993
  ident: 10.1016/j.ribaf.2022.101649_bib3
  article-title: Small Business Failure and Bankruptcy: What Progress Has Been Made in a Decade?
  publication-title: Small Enterp. Res.
  doi: 10.5172/ser.2.1-2.5
– ident: 10.1016/j.ribaf.2022.101649_bib29
– volume: 59
  start-page: 226
  year: 2016
  ident: 10.1016/j.ribaf.2022.101649_bib41
  article-title: Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.027
– volume: 61
  start-page: 304
  year: 2019
  ident: 10.1016/j.ribaf.2022.101649_bib9
  article-title: Predicting failure in the US banking sector: An extreme gradient boosting approach
  publication-title: Int. Rev. Econ. Financ.
  doi: 10.1016/j.iref.2018.03.008
– volume: 254
  start-page: 236
  issue: 1
  year: 2016
  ident: 10.1016/j.ribaf.2022.101649_bib19
  article-title: A two-stage classification technique for bankruptcy prediction
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.03.008
– volume: 40
  start-page: 2941
  issue: 8
  year: 2013
  ident: 10.1016/j.ribaf.2022.101649_bib43
  article-title: A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.12.009
– volume: 50
  start-page: 67
  year: 2017
  ident: 10.1016/j.ribaf.2022.101649_bib48
  article-title: Financial distress prediction: The case of French small and medium-sized firms
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2017.02.004
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.ribaf.2022.101649_bib31
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: 10.1016/j.ribaf.2022.101649_bib15
– volume: 19
  start-page: 1
  issue: 84
  year: 2018
  ident: 10.1016/j.ribaf.2022.101649_bib4
  article-title: Dalex: Explainers for complex predictive models in R
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 63
  issue: 1
  year: 2016
  ident: 10.1016/j.ribaf.2022.101649_bib44
  article-title: La Predicción Del Fracaso Bancario Con La Metodología “Boosting Classification Tree”
  publication-title: Rev. Esp. De. Financ. Y. Contab.
– year: 2020
  ident: 10.1016/j.ribaf.2022.101649_bib50
  article-title: Characteristics of consulting firms associated with the diffusion of big data analytics
  publication-title: J. Asian Bus. Econ. Stud., Ahead--Print. (Ahead--Print. )
– volume: 13
  issue: 16
  year: 2021
  ident: 10.1016/j.ribaf.2022.101649_bib26
  article-title: Mandatory esg reporting and xbrl taxonomies combination: Esg ratings and income statement, a sustainable value-added disclosure
  publication-title: Sustain. (Switz. )
SSID ssj0029012
Score 2.4712517
Snippet This study opens the black boxes and fills the literature gap by showing how it is possible to fit a very precise Machine Learning model that is highly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101649
SubjectTerms Business failure
Machine learning
Model interpretability
XGBoost
Title No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure
URI https://dx.doi.org/10.1016/j.ribaf.2022.101649
Volume 61
WOSCitedRecordID wos000805435500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1878-3384
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029012
  issn: 0275-5319
  databaseCode: AIEXJ
  dateStart: 20040401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLUJcEE9RCshI3EKqxEnq5Fiq8pJYcSjSiks0frUpaVKl6XZ_Cj8XO7G9W4pW9MAlWmVtx8p8mcxMPn9G6C0FAomMi5CJWISpUizMi0iFUaQIcEoNTWfYbILOZvl8XnybTH65tTCLmjZNvlwW5__V1PqcNrZZOnsLc_tB9Qn9WxtdH7XZ9fGfDD9rA0OeDZgpzQWsXRpHEBtN43rcDcKujjJfaDwNDoKzgVUp3TYSx8H84_u2vegDbuLrSplVKVAft13Vn5yZKglzlHkFVW11SVyY6_h8pl11reboe5mCvRrkPjy0DqDTdwlG2rDoWh9kX8mfMMoj1Ib_5PH8VcMbrgY-wg-dj8N6CUNnv44M5zwdoVlonMG6Wx412q1fNTWGUdr0hssfqw-nu13FwGiyErK7an1dYPuPF5-nIzqm22k5DFKaQcpxkDtoS0-uyKdoa__z4fyLT-Z1HDV8oXJTd4pWA3fwxlz-HvWsRTJHD9EDm4Lg_RE6j9BENo_RPbcC4glazFpsEIQHBOEBQW_wCj9Y4wev4Qe3CgO2-MEOP9jiB6_wgz1-cNVghwRs8fMUff9weHTwKbTbc4Rch3l9WKSSFiRO9rgEQpWiSqQxpSISkKlEpULnrhy4LBKWCx2XiwSAEc4FpDzKIE6eoWnTNvI5wjzl-p9MAMtlykzWFxFFcgWRzLI8KrYRcbev5Fa73myhUpcbTLeN3vlO56N0y-bme84upY0-x6iy1Ejb1PHF7a6zg-6vnoGXaNp3l_IVussXfXXRvbYw-w2luavg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=No+more+black+boxes%21+Explaining+the+predictions+of+a+machine+learning+XGBoost+classifier+algorithm+in+business+failure&rft.jtitle=Research+in+international+business+and+finance&rft.au=Carmona%2C+Pedro&rft.au=Dwekat%2C+Aladdin&rft.au=Mardawi%2C+Zeena&rft.date=2022-10-01&rft.issn=0275-5319&rft.volume=61&rft.spage=101649&rft_id=info:doi/10.1016%2Fj.ribaf.2022.101649&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ribaf_2022_101649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5319&client=summon