A scalable cellular implementation of parallel genetic programming

A new parallel implementation of genetic programming (GP) based on the cellular model is presented and compared with both canonical GP and the island model approach. The method adopts a load-balancing policy that avoids the unequal utilization of the processors. Experimental results on benchmark pro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 7; no. 1; pp. 37 - 53
Main Authors: Folino, G., Pizzuti, C., Spezzano, G.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new parallel implementation of genetic programming (GP) based on the cellular model is presented and compared with both canonical GP and the island model approach. The method adopts a load-balancing policy that avoids the unequal utilization of the processors. Experimental results on benchmark problems of different complexity show the superiority of the cellular approach with respect to the canonical sequential implementation and the island model. A theoretical performance analysis reveals the high scalability of the implementation realized and allows to predict the size of the population when the number of processors and their efficiency are fixed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2002.806168