A new approximate algorithm for the Chebyshev center

The parameter or state estimation with bounded noises is getting increasingly important in many applications of practical systems with some uncertainties. The problem to estimate a deterministic parameter or state which is known to lie in an intersection of some ellipsoids can be formulated to find...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatica (Oxford) Ročník 49; číslo 8; s. 2483 - 2488
Hlavní autori: Wu, Duzhi, Zhou, Jie, Hu, Aiping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.08.2013
Elsevier
Predmet:
ISSN:0005-1098, 1873-2836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The parameter or state estimation with bounded noises is getting increasingly important in many applications of practical systems with some uncertainties. The problem to estimate a deterministic parameter or state which is known to lie in an intersection of some ellipsoids can be formulated to find the Chebyshev center of the intersection set in the case of l2 norm of the estimation error. In this paper, an appropriate positive semidefinite relaxation of non-convex optimization problem is derived, and then a new algorithm for robust minimax estimation is provided. Some examples are given to compare the approximate estimate with the existing relaxed Chebyshev center.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2013.04.029