Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data

•Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion algorithm.•A universal LR model was built to predict CEC at various depths using inverted electrical conductivity.•CEC was mapped at various de...

Full description

Saved in:
Bibliographic Details
Published in:Soil & tillage research Vol. 200; p. 104618
Main Authors: Zhao, Dongxue, Li, Nan, Zare, Ehsan, Wang, Jie, Triantafilis, John
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2020
Subjects:
ISSN:0167-1987, 1879-3444
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion algorithm.•A universal LR model was built to predict CEC at various depths using inverted electrical conductivity.•CEC was mapped at various depths (0–2.1 m with 0.3 m increment) across a 26 ha field, using the universal LR model. Cation exchange capacity (CEC, cmol(+) kg−1) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and directly measure across a heterogenous field and at different depths. To add value to limited data, proximally sensed apparent soil electrical conductivity (ECa, mS m−1) from electromagnetic (EM) instruments has been coupled to CEC at each depth through a linear regression (LR) model. In this study, LR between ECa and depth specific CEC was compared with a LR developed between true electrical conductivity (σ, mS m−1), inverted from ECa, and CEC from various depths, including topsoil (0–0.3 m), subsurface (0.3–0.6 m), shallow subsoil (0.6–0.9 m) and deeper subsoil (0.9–2.1 m). We estimate σ using quasi-3d (q-3d) inversion software (EM4Soil) considering inversion of EM38 and EM31 ECa either alone or in combination (joint inversion), in horizontal (ECah) and vertical (ECav) modes, and EM38 at two different heights (i.e. 0.2 or 0.4 m). The calibration results showed LR between ECa and depth specific CEC in the topsoil (R2 = 0.31), subsurface (0.37) and shallow subsoil (0.52) was unsatisfactory. Stronger LR could be established for deeper subsoil CEC (> 0.60). However, a single LR could be developed between CEC at all depths with σ (R2 = 0.72) estimated by jointly inverting EM38 (0.2 m) and EM31 ECa in both modes using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). A leave-one-out-cross-validation showed CEC prediction was precise (RMSE, 2.39 cmol(+) kg−1), unbiased (ME, -0.01 cmol(+) kg−1) with good concordance (Lin’s = 0.82). To improve areal prediction closer spaced transects are required, while to improve vertical resolution of prediction we recommend the use of a single-frequency multi-coil array DUALEM-421.
AbstractList Cation exchange capacity (CEC, cmol(+) kg⁻¹) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and directly measure across a heterogenous field and at different depths. To add value to limited data, proximally sensed apparent soil electrical conductivity (ECₐ, mS m⁻¹) from electromagnetic (EM) instruments has been coupled to CEC at each depth through a linear regression (LR) model. In this study, LR between ECₐ and depth specific CEC was compared with a LR developed between true electrical conductivity (σ, mS m⁻¹), inverted from ECₐ, and CEC from various depths, including topsoil (0–0.3 m), subsurface (0.3–0.6 m), shallow subsoil (0.6–0.9 m) and deeper subsoil (0.9–2.1 m). We estimate σ using quasi-3d (q-3d) inversion software (EM4Soil) considering inversion of EM38 and EM31 ECₐ either alone or in combination (joint inversion), in horizontal (ECₐₕ) and vertical (ECₐᵥ) modes, and EM38 at two different heights (i.e. 0.2 or 0.4 m). The calibration results showed LR between ECₐ and depth specific CEC in the topsoil (R² = 0.31), subsurface (0.37) and shallow subsoil (0.52) was unsatisfactory. Stronger LR could be established for deeper subsoil CEC (> 0.60). However, a single LR could be developed between CEC at all depths with σ (R² = 0.72) estimated by jointly inverting EM38 (0.2 m) and EM31 ECₐ in both modes using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). A leave-one-out-cross-validation showed CEC prediction was precise (RMSE, 2.39 cmol(+) kg⁻¹), unbiased (ME, -0.01 cmol(+) kg⁻¹) with good concordance (Lin’s = 0.82). To improve areal prediction closer spaced transects are required, while to improve vertical resolution of prediction we recommend the use of a single-frequency multi-coil array DUALEM-421.
•Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion algorithm.•A universal LR model was built to predict CEC at various depths using inverted electrical conductivity.•CEC was mapped at various depths (0–2.1 m with 0.3 m increment) across a 26 ha field, using the universal LR model. Cation exchange capacity (CEC, cmol(+) kg−1) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and directly measure across a heterogenous field and at different depths. To add value to limited data, proximally sensed apparent soil electrical conductivity (ECa, mS m−1) from electromagnetic (EM) instruments has been coupled to CEC at each depth through a linear regression (LR) model. In this study, LR between ECa and depth specific CEC was compared with a LR developed between true electrical conductivity (σ, mS m−1), inverted from ECa, and CEC from various depths, including topsoil (0–0.3 m), subsurface (0.3–0.6 m), shallow subsoil (0.6–0.9 m) and deeper subsoil (0.9–2.1 m). We estimate σ using quasi-3d (q-3d) inversion software (EM4Soil) considering inversion of EM38 and EM31 ECa either alone or in combination (joint inversion), in horizontal (ECah) and vertical (ECav) modes, and EM38 at two different heights (i.e. 0.2 or 0.4 m). The calibration results showed LR between ECa and depth specific CEC in the topsoil (R2 = 0.31), subsurface (0.37) and shallow subsoil (0.52) was unsatisfactory. Stronger LR could be established for deeper subsoil CEC (> 0.60). However, a single LR could be developed between CEC at all depths with σ (R2 = 0.72) estimated by jointly inverting EM38 (0.2 m) and EM31 ECa in both modes using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). A leave-one-out-cross-validation showed CEC prediction was precise (RMSE, 2.39 cmol(+) kg−1), unbiased (ME, -0.01 cmol(+) kg−1) with good concordance (Lin’s = 0.82). To improve areal prediction closer spaced transects are required, while to improve vertical resolution of prediction we recommend the use of a single-frequency multi-coil array DUALEM-421.
ArticleNumber 104618
Author Zhao, Dongxue
Li, Nan
Zare, Ehsan
Triantafilis, John
Wang, Jie
Author_xml – sequence: 1
  givenname: Dongxue
  surname: Zhao
  fullname: Zhao, Dongxue
  email: zhaodx08@gmail.com
– sequence: 2
  givenname: Nan
  surname: Li
  fullname: Li, Nan
– sequence: 3
  givenname: Ehsan
  surname: Zare
  fullname: Zare, Ehsan
– sequence: 4
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
– sequence: 5
  givenname: John
  orcidid: 0000-0003-1561-0242
  surname: Triantafilis
  fullname: Triantafilis, John
  email: j.triantafilis@unsw.edu.au
BookMark eNqFkD1PwzAQhi0EEuXjF7B4ZEmxYzdxBgZU8SWBWECM1tW-FEfBSW0Xwb8naZgYYDqf_T4n33NE9n3nkZAzzuac8eKimcfk2naes3y8kQVXe2TGVVllQkq5T2ZDqsx4pcpDchRjwxiTIlcz8voIfe_8mhpIrvMUP80b-DUOfQ_GpS-6jeMz0M0WosuEpU3nfKLOf2CII9LV9PpRKArejgdOLSQ4IQc1tBFPf-oxebm5fl7eZQ9Pt_fLq4fMCMVTxosaaot2JWtleWWLnIEsVqwCwYwClADVQoAAW4JdDH82C5kbhiswBuuCiWNyPs3tQ7fZYkz63UWDbQseu23UuVCqLIQU1RCtpqgJXYwBaz3st9s6BXCt5kyPMnWjdzL1KFNPMgdW_GL74N4hfP1DXU4UDgY-HAYdjUNv0LqAJmnbuT_5b-qykU8
CitedBy_id crossref_primary_10_1016_j_compag_2022_107512
crossref_primary_10_1002_ldr_4709
crossref_primary_10_1016_j_agwat_2020_106705
crossref_primary_10_1016_j_catena_2021_105702
crossref_primary_10_1016_j_geoderma_2021_115380
crossref_primary_10_3390_land10121406
crossref_primary_10_3390_land13122250
crossref_primary_10_1007_s11356_020_11255_4
crossref_primary_10_1016_j_geoderma_2023_116378
crossref_primary_10_1016_j_scs_2022_103684
crossref_primary_10_3390_agronomy14112671
crossref_primary_10_3390_ijerph192316159
crossref_primary_10_1016_j_compag_2021_105990
crossref_primary_10_3390_land11122307
crossref_primary_10_3390_rs14081911
crossref_primary_10_1016_j_catena_2020_104938
crossref_primary_10_3390_land11122148
crossref_primary_10_1109_JSTARS_2022_3153958
crossref_primary_10_1007_s11356_022_20138_9
crossref_primary_10_3390_land13030295
crossref_primary_10_1080_10106049_2022_2076913
crossref_primary_10_1016_j_still_2023_105735
crossref_primary_10_3390_su15020964
crossref_primary_10_3390_atmos13010075
crossref_primary_10_3390_atmos13040596
crossref_primary_10_1016_j_uclim_2022_101387
crossref_primary_10_1016_j_still_2024_106429
crossref_primary_10_3390_atmos13020287
crossref_primary_10_1016_j_catena_2022_106843
crossref_primary_10_1007_s40333_022_0052_6
crossref_primary_10_3390_land11091553
crossref_primary_10_1007_s11629_020_6523_3
crossref_primary_10_3390_rs14132964
crossref_primary_10_3390_su142416696
crossref_primary_10_1016_j_rser_2022_112350
crossref_primary_10_1016_j_geoderma_2022_115972
crossref_primary_10_1002_ldr_3684
crossref_primary_10_3389_fevo_2022_922739
crossref_primary_10_1007_s12517_021_08810_9
crossref_primary_10_3390_land11010134
crossref_primary_10_3390_s22166153
crossref_primary_10_3390_su142214884
crossref_primary_10_3390_su15010683
crossref_primary_10_1016_j_compag_2022_107409
crossref_primary_10_1016_j_jclepro_2020_124849
crossref_primary_10_3390_land11071110
crossref_primary_10_1016_j_agwat_2021_107246
crossref_primary_10_3390_land11071076
Cites_doi 10.2136/sssaj1977.03615995004100060041x
10.3390/s19183936
10.1111/sum.12352
10.1016/S0016-7061(01)00074-X
10.1016/j.jappgeo.2004.04.005
10.1190/1.3537834
10.1016/S0016-7061(00)00025-2
10.1016/j.agwat.2015.09.003
10.1016/0016-7061(93)90049-Q
10.1016/S0016-7061(00)00043-4
10.1190/1.1442813
10.1071/SR08240
10.1111/sum.12261
10.1016/j.scitotenv.2017.05.074
10.1016/j.geoderma.2013.06.001
10.1111/sum.12353
10.1190/1.1442649
10.1016/j.compag.2004.11.010
10.1111/j.1365-2389.2012.01425.x
10.1111/j.1475-2743.2002.tb00249.x
10.2307/2532051
10.2136/sssaj2017.10.0356
10.1111/sum.12106
10.2136/sssaj2015.06.0238
10.2136/sssaj2018.03.0100
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2020.104618
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2020_104618
S0167198719300352
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c381t-16fafdedb4f8d19d620a46b09a30c8ae4aa953a3ad7ad5043c542c0ebaccef603
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528029900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-1987
IngestDate Sun Nov 09 11:47:34 EST 2025
Sat Nov 29 07:20:51 EST 2025
Tue Nov 18 21:56:42 EST 2025
Fri Feb 23 02:50:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cation exchange capacity
Digital soil mapping
Fertility
EM38
Electromagnetic inversion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-16fafdedb4f8d19d620a46b09a30c8ae4aa953a3ad7ad5043c542c0ebaccef603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1561-0242
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167198719300352
PQID 2388763439
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388763439
crossref_citationtrail_10_1016_j_still_2020_104618
crossref_primary_10_1016_j_still_2020_104618
elsevier_sciencedirect_doi_10_1016_j_still_2020_104618
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McKenzie (bib0100) 1998
Triantafilis, Lesch, La Lau, Buchanan (bib0185) 2009; 47
McNeill (bib0110) 1980
Geonics Ltd (bib0030) 2020
Jafari, Finke, Vande Wauw, Ayoubi, Khademi (bib0055) 2012; 63
Triantafilis, Monteiro Santos (bib0175) 2013; 211
Zhao, Zhao, Khongnawang, Arshad, Triantafilis (bib0200) 2018
McKenzie, Austin (bib0105) 1993; 57
Huang, Scudiero, Choo, Corwin, Triantafilis (bib0045) 2016; 163
Huang, Davies, Bowd, Monteiro Santos, Triantafilis (bib0040) 2014; 30
Tucker (bib0190) 1974
Blume, Brümmer, Fleige, Horn, Kandeler, Kögel-Knabner, Kretzschmar, Stahr, Wilke (bib0010) 2015
Koganti, Moral, Rebollo, Huang, Triantafilis (bib0075) 2017; 599
McNeill (bib0115) 1980
DeGroot-Hedlin, Constable (bib0020) 1990; 55
Sudduth, Kitchen, Wiebold, Batchelor, Bollero, Bullock, Clay, Palm, Pierce, Schuler, Thelen (bib0170) 2005; 46
Sasaki (bib0150) 1989; 54
Zare, Huang, Santos, Triantafilis (bib0195) 2015; 79
Holmgren, Juve, Geschwender (bib0035) 1977; 41
Nagra, Burkett, Huang, Ward, Triantafilis (bib0135) 2017; 33
Bishop, McBratney (bib0005) 2001; 103
McNeill (bib0120) 1990
Monteiro Santos (bib0125) 2004; 56
Li, Zare, Huang, Triantafilis (bib0080) 2018
Kaufman, Keller (bib0065) 1983
R Core Team (bib0140) 2016
Monteiro Santos, Triantafilis, Bruzgulis (bib0130) 2011; 76
Lin (bib0085) 1989; 45
Malone, Minasny, McBratney (bib0090) 2017
Stockmann, Huang, Minasny, Triantafilis (bib0165) 2017; 33
Stannard, Kelly (bib0160) 1977
Jung, Kitchen, Sudduth, Anderson (bib0060) 2006; 74
EMTOMO (bib0025) 2014
Khongnawang, Zare, Zhao, Srihabun, Triantafilis (bib0070) 2019; 19
McBratney, Odeh, Bishop, Dunbar, Shatar (bib0095) 2000; 97
Triantafilis, Ahmed, Odeh (bib0180) 2002; 18
Castrignanò, Giugliarini, Risaliti, Martinelli (bib0015) 2000; 97
Rhoades, Chanduvi, Lesch (bib0145) 1999
Smith, Welsh (bib0155) 2018
Huang, Scudiero, Clary, Corwin, Triantafilis (bib0050) 2017; 33
McNeill (10.1016/j.still.2020.104618_bib0120) 1990
Smith (10.1016/j.still.2020.104618_bib0155) 2018
Blume (10.1016/j.still.2020.104618_bib0010) 2015
Khongnawang (10.1016/j.still.2020.104618_bib0070) 2019; 19
Bishop (10.1016/j.still.2020.104618_bib0005) 2001; 103
Triantafilis (10.1016/j.still.2020.104618_bib0180) 2002; 18
Zhao (10.1016/j.still.2020.104618_bib0200) 2018
R Core Team (10.1016/j.still.2020.104618_bib0140) 2016
Kaufman (10.1016/j.still.2020.104618_bib0065) 1983
Malone (10.1016/j.still.2020.104618_bib0090) 2017
Holmgren (10.1016/j.still.2020.104618_bib0035) 1977; 41
McKenzie (10.1016/j.still.2020.104618_bib0105) 1993; 57
Huang (10.1016/j.still.2020.104618_bib0050) 2017; 33
Triantafilis (10.1016/j.still.2020.104618_bib0185) 2009; 47
Huang (10.1016/j.still.2020.104618_bib0045) 2016; 163
McNeill (10.1016/j.still.2020.104618_bib0115) 1980
Huang (10.1016/j.still.2020.104618_bib0040) 2014; 30
McNeill (10.1016/j.still.2020.104618_bib0110) 1980
Jafari (10.1016/j.still.2020.104618_bib0055) 2012; 63
Koganti (10.1016/j.still.2020.104618_bib0075) 2017; 599
Stannard (10.1016/j.still.2020.104618_bib0160) 1977
McBratney (10.1016/j.still.2020.104618_bib0095) 2000; 97
Zare (10.1016/j.still.2020.104618_bib0195) 2015; 79
Rhoades (10.1016/j.still.2020.104618_bib0145) 1999
Stockmann (10.1016/j.still.2020.104618_bib0165) 2017; 33
Sudduth (10.1016/j.still.2020.104618_bib0170) 2005; 46
Li (10.1016/j.still.2020.104618_bib0080) 2018
Jung (10.1016/j.still.2020.104618_bib0060) 2006; 74
Sasaki (10.1016/j.still.2020.104618_bib0150) 1989; 54
DeGroot-Hedlin (10.1016/j.still.2020.104618_bib0020) 1990; 55
McKenzie (10.1016/j.still.2020.104618_bib0100) 1998
Monteiro Santos (10.1016/j.still.2020.104618_bib0125) 2004; 56
Tucker (10.1016/j.still.2020.104618_bib0190) 1974
EMTOMO (10.1016/j.still.2020.104618_bib0025) 2014
Castrignanò (10.1016/j.still.2020.104618_bib0015) 2000; 97
Geonics Ltd (10.1016/j.still.2020.104618_bib0030) 2020
Nagra (10.1016/j.still.2020.104618_bib0135) 2017; 33
Triantafilis (10.1016/j.still.2020.104618_bib0175) 2013; 211
Lin (10.1016/j.still.2020.104618_bib0085) 1989; 45
Monteiro Santos (10.1016/j.still.2020.104618_bib0130) 2011; 76
References_xml – volume: 18
  start-page: 330
  year: 2002
  end-page: 339
  ident: bib0180
  article-title: Application of a mobile electromagnetic sensing system (MESS) to assess cause and management of soil salinization in an irrigated cotton-growing field
  publication-title: Soil Use Manag.
– volume: 41
  start-page: 1207
  year: 1977
  end-page: 1208
  ident: bib0035
  article-title: A mechanically controlled variable rate leaching device
  publication-title: Soil Sci. Soc. Am. J.
– volume: 47
  start-page: 651
  year: 2009
  end-page: 663
  ident: bib0185
  article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Soil Res.
– volume: 211
  start-page: 28
  year: 2013
  end-page: 38
  ident: bib0175
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil)
  publication-title: Geoderma
– volume: 74
  start-page: 4
  year: 2006
  ident: bib0060
  article-title: Spatial characteristics of Claypan soil properties in an agricultural field
  publication-title: Soil Sci. Soc. Am. J.
– volume: 97
  start-page: 39
  year: 2000
  end-page: 60
  ident: bib0015
  article-title: Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics
  publication-title: Geoderma
– volume: 76
  start-page: B43
  year: 2011
  end-page: B53
  ident: bib0130
  article-title: A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: application to DUALEM-421 data collected in a riverine plain
  publication-title: Geophysics.
– year: 1998
  ident: bib0100
  article-title: SOILpak for Cotton Growers
– volume: 33
  start-page: 425
  year: 2017
  end-page: 436
  ident: bib0135
  article-title: Field level digital mapping of soil mineralogy using proximal and remote‐sensed data
  publication-title: Soil Use Manage.
– volume: 54
  start-page: 254
  year: 1989
  end-page: 262
  ident: bib0150
  article-title: Two-dimensional joint inversion of magnetotelluric and dipole–dipole resistivity data
  publication-title: Geophysics
– year: 1980
  ident: bib0110
  article-title: Electrical Conductivity of Soils and Rock
– volume: 30
  start-page: 241
  year: 2014
  end-page: 250
  ident: bib0040
  article-title: Spatial prediction of the exchangeable sodium percentage at multiple depths using electromagnetic inversion modelling
  publication-title: Soil Use Manage
– year: 1983
  ident: bib0065
  article-title: Frequency and Transient Soundings. Meth. Geochem. Geophys. 16
– volume: 103
  start-page: 149
  year: 2001
  end-page: 160
  ident: bib0005
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
  publication-title: Geoderma
– year: 2020
  ident: bib0030
  article-title: 1745 Meyerside Drive, Unit 8, Mississauga, Ontario L5T 1C6, Canada
– year: 2018
  ident: bib0200
  article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil
  publication-title: Soil Sci. Soc. Am. J.
– year: 2018
  ident: bib0080
  article-title: Mapping soil cation-exchange capacity using bayesian modeling and proximal sensors at the field scale
  publication-title: Soil Sci. Soc. Am. J.
– volume: 19
  start-page: 3936
  year: 2019
  ident: bib0070
  article-title: Three-dimensional mapping of clay and cation exchange capacity of Sandy and infertile soil using EM38 and inversion software
  publication-title: Sensors
– year: 2016
  ident: bib0140
  article-title: R: A Language and Environment for Statistical Computing
– volume: 33
  start-page: 413
  year: 2017
  end-page: 424
  ident: bib0165
  article-title: Utilizing a DUALEM‐421 and inversion modelling to map baseline soil salinity along toposequences in the Hunter Valley Wine district
  publication-title: Soil Use Manage.
– volume: 599
  start-page: 2156
  year: 2017
  end-page: 2165
  ident: bib0075
  article-title: Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software
  publication-title: Sci. Total Environ.
– year: 1990
  ident: bib0120
  article-title: Geonics EM38 Ground Conductivity Meter: EM38 Operating Manual
– volume: 56
  start-page: 123
  year: 2004
  end-page: 134
  ident: bib0125
  article-title: 1-D laterally constrained inversion of EM34 profiling data
  publication-title: J. Appl. Geophys.
– volume: 33
  start-page: 191
  year: 2017
  end-page: 204
  ident: bib0050
  article-title: Time‐lapse monitoring of soil water content using electromagnetic conductivity imaging
  publication-title: Soil Use Manage.
– volume: 57
  start-page: 329
  year: 1993
  end-page: 355
  ident: bib0105
  article-title: A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation
  publication-title: Geoderma
– year: 1974
  ident: bib0190
  article-title: Laboratory Procedure for Cation Exchange Measurements in Soils. CSIRO Division of Soils, Technical Paper No. 23
– year: 2017
  ident: bib0090
  article-title: Using R for Digital Soil Mapping, Progress in Soil Science
– volume: 97
  start-page: 293
  year: 2000
  end-page: 327
  ident: bib0095
  article-title: An overview of pedometric techniques for use in soil survey
  publication-title: Geoderma
– year: 2018
  ident: bib0155
  article-title: NUTRIpak: A Practical Guidance to Cotton Nutrition
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bib0085
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– year: 1980
  ident: bib0115
  article-title: Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers
– volume: 55
  start-page: 1613
  year: 1990
  end-page: 1624
  ident: bib0020
  article-title: Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data
  publication-title: Geophysics
– year: 1999
  ident: bib0145
  article-title: Soil Salinity Assessment. Methods and Interpretation of Electrical Conductivity Measurements. FAO Irrigation and Drainage Paper 57
– year: 2014
  ident: bib0025
  article-title: EM4Soil Version 2. EMTOMO, R. Alice Cruz 4, Odivelas, Lisboa, Portugal.
– year: 2015
  ident: bib0010
  article-title: Scheffer/Schachtschabel Soil Science
– volume: 46
  start-page: 263
  year: 2005
  end-page: 283
  ident: bib0170
  article-title: Relating apparent electrical conductivity to soil properties across the north-central USA
  publication-title: Comput Electron Agr.
– year: 1977
  ident: bib0160
  article-title: The Irrigation Potential of the Lower Namoi Valley
– volume: 79
  start-page: 1729
  year: 2015
  end-page: 1740
  ident: bib0195
  article-title: Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software
  publication-title: Soil Sci. Soc. Am. J.
– volume: 163
  start-page: 285
  year: 2016
  end-page: 294
  ident: bib0045
  article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging
  publication-title: Agric. Water Manag.
– volume: 63
  start-page: 284
  year: 2012
  end-page: 298
  ident: bib0055
  article-title: Spatial prediction of USDA -great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types
  publication-title: Eur. J. Soil Sci.
– year: 1999
  ident: 10.1016/j.still.2020.104618_bib0145
– volume: 74
  start-page: 4
  year: 2006
  ident: 10.1016/j.still.2020.104618_bib0060
  article-title: Spatial characteristics of Claypan soil properties in an agricultural field
  publication-title: Soil Sci. Soc. Am. J.
– year: 1998
  ident: 10.1016/j.still.2020.104618_bib0100
– year: 2018
  ident: 10.1016/j.still.2020.104618_bib0155
– volume: 41
  start-page: 1207
  year: 1977
  ident: 10.1016/j.still.2020.104618_bib0035
  article-title: A mechanically controlled variable rate leaching device
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1977.03615995004100060041x
– volume: 19
  start-page: 3936
  issue: 18
  year: 2019
  ident: 10.1016/j.still.2020.104618_bib0070
  article-title: Three-dimensional mapping of clay and cation exchange capacity of Sandy and infertile soil using EM38 and inversion software
  publication-title: Sensors
  doi: 10.3390/s19183936
– volume: 33
  start-page: 413
  issue: 3
  year: 2017
  ident: 10.1016/j.still.2020.104618_bib0165
  article-title: Utilizing a DUALEM‐421 and inversion modelling to map baseline soil salinity along toposequences in the Hunter Valley Wine district
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12352
– volume: 103
  start-page: 149
  issue: 1–2
  year: 2001
  ident: 10.1016/j.still.2020.104618_bib0005
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00074-X
– year: 2015
  ident: 10.1016/j.still.2020.104618_bib0010
– volume: 56
  start-page: 123
  issue: 2
  year: 2004
  ident: 10.1016/j.still.2020.104618_bib0125
  article-title: 1-D laterally constrained inversion of EM34 profiling data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2004.04.005
– volume: 76
  start-page: B43
  year: 2011
  ident: 10.1016/j.still.2020.104618_bib0130
  article-title: A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: application to DUALEM-421 data collected in a riverine plain
  publication-title: Geophysics.
  doi: 10.1190/1.3537834
– volume: 97
  start-page: 39
  issue: 1–2
  year: 2000
  ident: 10.1016/j.still.2020.104618_bib0015
  article-title: Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00025-2
– volume: 163
  start-page: 285
  year: 2016
  ident: 10.1016/j.still.2020.104618_bib0045
  article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.09.003
– volume: 57
  start-page: 329
  issue: 4
  year: 1993
  ident: 10.1016/j.still.2020.104618_bib0105
  article-title: A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation
  publication-title: Geoderma
  doi: 10.1016/0016-7061(93)90049-Q
– year: 1977
  ident: 10.1016/j.still.2020.104618_bib0160
– year: 1990
  ident: 10.1016/j.still.2020.104618_bib0120
– year: 1980
  ident: 10.1016/j.still.2020.104618_bib0110
– volume: 97
  start-page: 293
  issue: 3–4
  year: 2000
  ident: 10.1016/j.still.2020.104618_bib0095
  article-title: An overview of pedometric techniques for use in soil survey
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00043-4
– volume: 55
  start-page: 1613
  year: 1990
  ident: 10.1016/j.still.2020.104618_bib0020
  article-title: Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data
  publication-title: Geophysics
  doi: 10.1190/1.1442813
– year: 1980
  ident: 10.1016/j.still.2020.104618_bib0115
– volume: 47
  start-page: 651
  issue: 7
  year: 2009
  ident: 10.1016/j.still.2020.104618_bib0185
  article-title: Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model
  publication-title: Soil Res.
  doi: 10.1071/SR08240
– volume: 33
  start-page: 191
  issue: 2
  year: 2017
  ident: 10.1016/j.still.2020.104618_bib0050
  article-title: Time‐lapse monitoring of soil water content using electromagnetic conductivity imaging
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12261
– volume: 599
  start-page: 2156
  year: 2017
  ident: 10.1016/j.still.2020.104618_bib0075
  article-title: Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.074
– year: 1983
  ident: 10.1016/j.still.2020.104618_bib0065
– volume: 211
  start-page: 28
  year: 2013
  ident: 10.1016/j.still.2020.104618_bib0175
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.001
– volume: 33
  start-page: 425
  issue: 3
  year: 2017
  ident: 10.1016/j.still.2020.104618_bib0135
  article-title: Field level digital mapping of soil mineralogy using proximal and remote‐sensed data
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12353
– year: 2014
  ident: 10.1016/j.still.2020.104618_bib0025
– volume: 54
  start-page: 254
  year: 1989
  ident: 10.1016/j.still.2020.104618_bib0150
  article-title: Two-dimensional joint inversion of magnetotelluric and dipole–dipole resistivity data
  publication-title: Geophysics
  doi: 10.1190/1.1442649
– volume: 46
  start-page: 263
  issue: 1–3
  year: 2005
  ident: 10.1016/j.still.2020.104618_bib0170
  article-title: Relating apparent electrical conductivity to soil properties across the north-central USA
  publication-title: Comput Electron Agr.
  doi: 10.1016/j.compag.2004.11.010
– year: 2020
  ident: 10.1016/j.still.2020.104618_bib0030
– volume: 63
  start-page: 284
  year: 2012
  ident: 10.1016/j.still.2020.104618_bib0055
  article-title: Spatial prediction of USDA -great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2012.01425.x
– year: 1974
  ident: 10.1016/j.still.2020.104618_bib0190
– volume: 18
  start-page: 330
  issue: 4
  year: 2002
  ident: 10.1016/j.still.2020.104618_bib0180
  article-title: Application of a mobile electromagnetic sensing system (MESS) to assess cause and management of soil salinization in an irrigated cotton-growing field
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2002.tb00249.x
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1016/j.still.2020.104618_bib0085
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– year: 2018
  ident: 10.1016/j.still.2020.104618_bib0080
  article-title: Mapping soil cation-exchange capacity using bayesian modeling and proximal sensors at the field scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.10.0356
– year: 2017
  ident: 10.1016/j.still.2020.104618_bib0090
– volume: 30
  start-page: 241
  issue: 2
  year: 2014
  ident: 10.1016/j.still.2020.104618_bib0040
  article-title: Spatial prediction of the exchangeable sodium percentage at multiple depths using electromagnetic inversion modelling
  publication-title: Soil Use Manage
  doi: 10.1111/sum.12106
– volume: 79
  start-page: 1729
  issue: 6
  year: 2015
  ident: 10.1016/j.still.2020.104618_bib0195
  article-title: Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.06.0238
– year: 2016
  ident: 10.1016/j.still.2020.104618_bib0140
– year: 2018
  ident: 10.1016/j.still.2020.104618_bib0200
  article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.03.0100
SSID ssj0004328
Score 2.506196
Snippet •Separate LR could not be developed between ECa and measured CEC at different depths.•Combined EM38 and EM31 ECa were inverted by a quisi-3d joint-inversion...
Cation exchange capacity (CEC, cmol(+) kg⁻¹) is a measure of the capacity of soil to retain and exchange cations. However, it is expensive to sample and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104618
SubjectTerms algorithms
Cation exchange capacity
cations
computer software
Digital soil mapping
Electromagnetic inversion
EM38
Fertility
prediction
regression analysis
soil electrical conductivity
subsoil
topsoil
Title Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data
URI https://dx.doi.org/10.1016/j.still.2020.104618
https://www.proquest.com/docview/2388763439
Volume 200
WOSCitedRecordID wos000528029900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004328
  issn: 0167-1987
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ9ifMlIvJVMbr79WKEimLYJaUPrW3SxnZFqSqp-TP3zubOdtFAxARIvkRslcer7-XI-3_2OsfdaSh0ZSAJRlrhAgRjnXKUAp3usRFxmSQKWZ_YkOzvLp1P51YfbLm05gaxp8s1Gzv-rqPEcCptSZ_9C3P1D8QS2Ueh4RLHj8Y8EfwpzmwPlfHFDs3G5vfgbl8dkc6-tewAon3JZB5Eeztq6oUoBN853ZoMNT6Pc7itgYzT0CWy9FXve1tcWMyuqWXRFlVd2nGLODd0687y52qx77JzUXqH314FzgU--78QGXXoX9nFtdn0SodjGTjlH2V6yjPNdok4mH4f79Dh9m2cyiGJHAdkpZMdduq_cnZ9hdrSkP3dE_dodaq-_f2bNPqfeqDM0UC3n6112EGaJzAfsYPxlMj3eJs9GtgBv_3YdNZUNAtzr6nfmyy8fcmudXDxiD_2ygo8dHB6zO6Z5wh6MrxaeWsU8ZZceGNwBg3fA4B0wuAUGB94Bg1tg8B4YvK04AYMjMKgx4gSMZ-zbp8nFx8-BL6sRKDTPVsEoraDSRpdxleuR1GkoIE5LISESKgcTA8gkggh0BpoI7lQSh0qYEpQyVSqi52zQtI15wbg0aqTT1IRpWcZaUL6mkSCEwkUqEf8csrAbrUJ5znkqfXJddMGFs8IOcUFDXLghPmQf-pvmjnLl9svTTgyFtxqdNVggbm6_8V0ntAJ1Km2UQWPa9bJAM5aIGtFWf_mvD3_F7m8nxms2WC3W5g27p25W9XLx1mPwBwcKmu4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+cation+exchange+capacity+using+a+quasi-3d+joint+inversion+of+EM38+and+EM31+data&rft.jtitle=Soil+%26+tillage+research&rft.au=Zhao%2C+Dongxue&rft.au=Li%2C+Nan&rft.au=Zare%2C+Ehsan&rft.au=Wang%2C+Jie&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-1987&rft.eissn=1879-3444&rft.volume=200&rft_id=info:doi/10.1016%2Fj.still.2020.104618&rft.externalDocID=S0167198719300352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon